

An Atlas of the Infra-Red Solar Spectrum from 1 to 6\$\cdot \$5 \\mu \\$ Observed from a High-Altitude Aircraft

J. T. Houghton, N. D. P. Hughes, T. S. Moss and J. S. Seeley

Phil. Trans. R. Soc. Lond. A 1961 254, 47-123 doi: 10.1098/rsta.1961.0012

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

[47]

AN ATLAS OF THE INFRA-RED SOLAR SPECTRUM FROM 1 TO 6·5 μ OBSERVED FROM A HIGH-ALTITUDE AIRCRAFT

By J. T. HOUGHTON,* N. D. P. HUGHES, T. S. MOSS AND J. S. SEELEY†

Royal Aircraft Establishment, Farnborough, Hants

(Communicated by M. J. Lighthill, F.R.S.—Received 15 November 1960)

Records are presented of the infra-red solar spectrum from 1 to 6.5μ , observed from altitudes up to 15 km. A resolution of about 1 cm⁻¹ has been obtained over the whole region and 1200 absorption lines belonging to water vapour, CO2, CO, N2O and CH4 have been identified.

1. Introduction

The infra-red solar spectrum has been the subject of intensive study from observatories on the earth's surface (see, for example, Migeotte, Neven & Swensson 1956). Large portions of the infra-red region, however, are completely obscured, even at high mountain observatories, by absorption bands of water vapour and carbon dioxide. At altitudes above 40000 ft., which are easily reached by modern jet aircraft, the water vapour absorption bands are largely transparent and the carbon dioxide absorption bands are much reduced, so that more of the solar spectrum is available for study. This project was initiated by Dr F. E. Jones in consultation with the Gassiot Committee of the Royal Society as a contribution to the programme of the International Geophysical Year.

This atlas of the infra-red solar spectrum from 1 to 6.5μ is a record of observations made during ninety-eight flights with a high-resolution grating spectrometer installed in a Canberra aircraft of the Royal Aircraft Establishment, Farnborough, at altitudes of 20000 to 49 000 ft. The instrumentation, which has been described in detail by Houghton, Moss & Chamberlain (1958), was, briefly, as follows. A gauze-covered hole in the unpressurized part of the aircraft fuselage allowed sunlight to fall on a plane mirror 6 in. square, which formed part of a sun-following system. The spectrometer, which had an f/6 optical system, used a prism pre-monochromator and a 7500 lines/in. diffraction grating, 4 in. × 3 in. in size. A resolution of about 1 cm⁻¹ was obtained within the wavelength range 1 to 6.5μ . Lead salt photoconductive detectors were used for the following spectral ranges: 1 to 3μ , uncooled lead sulphide; 3 to 5μ , cooled lead telluride, 5 to 6.5μ , cooled lead selenide. A few results were also obtained with a gold-doped germanium detector. Great care was taken to ensure that the spectrometer was free of water vapour or other absorbing gases.

The spectrum was scanned by rotating the grating while the signal from the detector amplifier was recorded by a multi-channel film recording galvanometer. The galvanometer recorded on photographic paper, 60 mm wide, moving usually at \frac{1}{4} in./s, but at $\frac{1}{16}$ in./s for the longest wavelengths. During preliminary work a potentiometer penrecorder was used, but the spectra presented here were all made with the film recorder,

- * Now at Clarendon Laboratory, Oxford.
- † Now at Queen Mary College, London.

Vol. 254. A. 1037. (Price £ 1. 5s.)

[Published 9 November 1961

which had the advantage of a much faster response. Additional channels indicated the output from a photocell monitoring the total sunlight entering the spectrometer and the angular position of the grating at intervals of 3 minutes of arc. The latter marks, which enabled a fairly accurate wavelength scale to be established, have been removed from the records which are reproduced in the atlas at approximately the original size.

Variations in the monitoring signal were due either to imperfect functioning of the sun-follower in compensating for aircraft movements or to variations in the degree of obscuration of the gauze 'window'. The variations in the monitor and detector signals are not necessarily in proportion and in general the monitor signal shows greater variation than the spectral record, probably because the former is determined mainly by the peak solar radiation which, for example, is much more susceptible to scattering by traces of high cloud than the infra-red radiation. Where the monitor shows little variation the spectra can be used directly to determine absolute absorption levels; where variations occur, careful comparison of the two traces will still enable a background energy curve to be drawn over small wavelength intervals in many cases.

2. The figures

The region from 1 to 6.5μ has been divided into 35 sections, with a small overlap on each section. Wherever possible, an opening shows four observations of the same section, together with the appropriate portion of the table of line identification (table 2).

In general the three upper traces, on the left-hand page, show records obtained from the aircraft, divided into the altitude categories: (a) above 40000 ft., (b) 30000 to $40\,000$ ft. and (c) $20\,000$ to $30\,000$ ft. On the right-hand page a ground level record (d), obtained near Farnborough (240 ft. above sea level) with the same instrument has been included for comparison. In the spectral regions where no solar radiation reaches the ground, suitable laboratory spectra are included in place of the solar spectrum (d). Table 1, pp. 51 and 52, identifies the conditions under which the spectra in each figure were observed.

Each section comprises about 8 in. of the original record, which for figures 1 to 33 would have taken 30 s to scan. For figures 34 and 35, which were recorded at the slower paper speed, the time would have been 120 s.

The monitor signal is usually the broader line on the trace. The zero level of the detector galvanometer is shown by the base line which has been drawn in, and a short example of the noise level encountered when the detector was not illuminated has been included at the end of the trace where appropriate. The spectral bandwith used in each observation is represented by the gap in the symbol $\dashv \vdash$. A wave-number scale has been constructed for each page; small fluctuations in the recording speed often occurred and since these cannot be corrected the scale is to be used only as a guide.

3. The identifications

The most prominent features in each section have been marked with a vertical dash on one, or sometimes two, of the traces in each figure. Every tenth dash is numbered to correspond to table 2. In identifying these features the frequency was first established to

within about 5 cm⁻¹ by means of the grating rotation markers. Careful comparison of the records with data from other sources then enabled the identifications in table 2 to be listed. The wave numbers (corrected to vacuum) given in this table are quoted from the various sources noted by a number in the reference column. These numbered references

ATLAS OF THE INFRA-RED SOLAR SPECTRUM

have been listed on p. 53. Particular use has been made of the three photometric atlases covering the region studied in the present work: from 1 to $2.5 \,\mu$, Mohler, Pierce, McMath & Goldberg (1950), at the Mount Wilson Observatory; 2.8 to 5.3μ , Migeotte et al. (1956) at the Jungfraujoch Observatory; and Shaw, Chapman, Howard & Oxholm (1951) at Columbus, Ohio.

Most of the spectra in this atlas are not so well resolved as those given in the sources quoted; many of the features, registered with a single mark, are blends of lines quite clearly resolved by other workers. In each of these cases the wave number assigned to the feature is that of the strongest component, which is listed first in the table. Where the intensities are approximately equal the identifications are given in the order of the wave numbers. The ν_2 band of water vapour near $6\,\mu$, however, is revealed in greater detail in the high-altitude solar spectra than in published laboratory spectra. The additional features have been given an interpolated wave number from the known positions of nearby lines.

4. Discussion

The prominent features of the spectra are already well known (see, for example, Goldberg 1954), being bands due to the atmospheric constituents: water vapour, carbon dioxide, carbon monoxide, methane and nitrous oxide. Quantitative studies of some of the water-vapour lines have been made by Houghton & Seeley (1960), and of some of the lines of methane, nitrous oxide and carbon monoxide by Seeley & Houghton (1961).

Some lines due to absorption in the solar atmosphere are prominent in the highaltitude observations and are marked with the symbol on table 2. Among these are three absorption lines of hydrogen which are obscured by water vapour in the groundlevel spectrum and have not previously been observed. They are the second (4-6 transition) and fourth (4-8) members of the Brackett series and the first member (3-4 transition) of the Paschen-Ritz series. The line 4-6 occurs at 3808 cm⁻¹ and overlaps the water-vapour line at 3806·7 cm⁻¹ (figure 11, no. 24); it can be distinguished by comparing the solar spectra with figure 11(d), which is a record of the residual water-vapour absorption in the spectrometer at 45000 ft. obtained by mounting a small tungsten filament lamp at the entrance slit. The other two new hydrogen lines appear on figure 6, lines no. 26 and no. 52.

The R-branch of the v_3 band of methane, previously obscured by absorption due to the $2\nu_2$ water-vapour band, is revealed clearly in the high-altitude observations in figure 16. In figure 22 the ν_3 band of carbon dioxide is the only extended region of complete absorption which remained at the highest altitude (49000 ft.). The short-wavelength absorption edge is advanced by about 5 cm⁻¹ towards the band centre at this altitude.

There are a number of spectral features listed in table 2 for figures 23 and 24 which have a separation *less* than the spectral bandwidth of the spectrometer. Calculations show that the bandwidth used is sufficient to give the partial resolution observed. The repetition of these features in the several observations confirms their reality.

50

J. T. HOUGHTON AND OTHERS

Laboratory spectra, obtained with a short path (6 ft. of air at atmospheric pressure) are included in figures 31 to 35, since they have been helpful in identifying the new features observed at altitude in this region.

The data in the atlas are the culmination of a comprehensive flying programme, during which many members of the engineering services and aircrew associated with R.A.E. Radio Flight have given us their patient co-operation. We are grateful to our colleagues Mr I. D. Birch, who kept the equipment in working order and Mr T. D. F. Hawkins who acted as observer on many flights, and for assistance by our printing department in preparing the figures.

The lead selenide detector with a bloomed silicon window and the gold-doped germanium detector were generously provided by Dr B. Bode, Santa Barbara Research Centre, and Dr H. Levinstein, Syracuse University, respectively.

REFERENCES

Goldberg, L. 1954 The Earth as a planet (edited by G. P. Kuiper), p. 434. University of Chicago Press.

Houghton, J. T., Moss, T. S. & Chamberlain, J. P. 1958 J. Sci. Instrum. 35, 329.

Houghton, J. T. & Seeley, J. S. 1960 Quart. J. R. Met. Soc. 86, 358.

Migeotte, M., Neven, L. & Swensson, J. 1956 The solar spectrum for 2.8 to 23.7 microns. Parts I and II. Special Vol. Mém. Soc. R. Sci. Liège.

Mohler, O. C., Pierce, A. K., McMath, R. R. & Goldberg, L. 1950 Photometric atlas of the near infra-red solar spectrum. $\lambda 8465$ to $\lambda 25242$. University of Michigan Press.

Seeley, J. S. & Houghton, J. T. 1961 Infra-red phys. 1, No. 2.

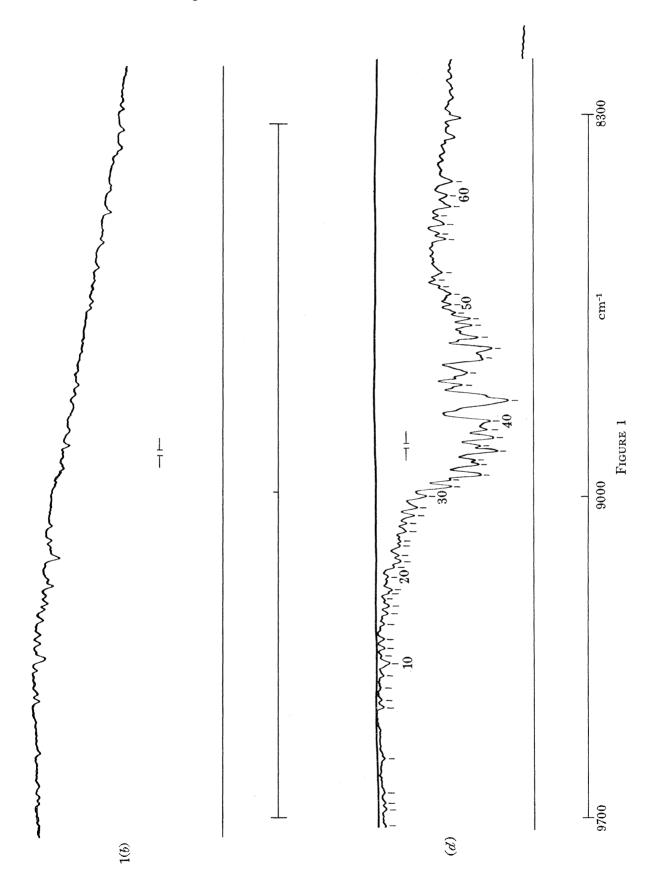
Shaw, J. H., Chapman, R. M., Howard, J. N. & Oxholm, M. L. 1951 Astrophys. J. 113, 268.

51

229 239 44

40000 35000 30000 240

35000 25000 20000 240


ATLAS OF THE INFRA-RED SOLAR SPECTRUM solar elevation MATHEMATICAL, PHYSICAL & ENGINEERING (ft.) 48 000 44 000 45 000 40 000 40 000 40 000 $\frac{40000}{240}$ 40000 25000 20000 240 $\begin{array}{c} 40\,000 \\ 25\,000 \\ 20\,000 \\ 240 \end{array}$ 40000 25000 20000 240 35000 25000 20000 240 45000 40000 time G.M.T.) 14.30 14.00 10.50 13.30 12.45 12.25 16.10 12.25 11.40 16.00 15.30 15.30 13.1514.20 14.00 10.50 13.30 14.20 15.3014.30 14.30 14.00 10.50 13.25 TRANSACTIONS COLLECTIONS January December June December December June June Juny November July March month 1957 1958 1960 1958 1960 1958 1958 1958 1960 1958 1958 1958 1960 1958 1958 1958 1960 LABLE 1 elevation MATHEMATICAL, PHYSICAL & ENGINEERING 40000 32000 32000 3240 35000 35000 35000 35000 35000 35000 35000 35000 35000 35000 35000 35000 35000 $\frac{35000}{240}$ 40000 35000 30000 240 240 44 000 40 000 30 000 240 40 000 30 000 240 240 11.00 09.45 09 TRANSACTIONS COLLECTIONS July June July May September 1958 1959

	solar elevation (°)	51 53 55	54 51 53	54 54 54	26 28 30	26 30 1	28 1 30 1 30	40 39 —	32
	Ū				0.00	0.00			
	altituc (ft.)	25000 20000 240	30000 25000 20000	30000 30000 24(45000 40000 30000	45000 40000 30000	45000 40000 30000 	40 000 30 000 — 45 000	4000 30000
	time (G.M.T.)	$11.10 \\ 10.20 \\ 13.35$	10.30	10.30 14.30 13.50	15.10 15.00 14.50	$15.10 \\ 15.00 \\ 14.50 \\$	15.10 15.00 14.50	10.50 10.30 14.45	14.35 14.20 —
	day	15 29 24	29 15 29	29 4 4 29	15 15 15 9	15 15 15 9	15 15 9	16 16 16 16	16 16 16 9
	month	August July May	July August July	July September May	September September September March	September September September March	September September September March	September September September December September	September September December March
	year	$\begin{array}{c} 1958 \\ 1959 \\ 1960 \end{array}$	1959 1958 1959	1959 1959 1959 1960	1959 1959 1959 1960	1959 1959 1959 1960	1959 1959 1959 1960	1959 1959 1959 1959	1959 1959 1959 1960
ontinued)	figure no.	$28 \begin{pmatrix} b \\ c \\ d \end{pmatrix}$	$\begin{array}{c} 29 \ (a) \ (b) \ (c) \end{array}$	$\stackrel{(a)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}}}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}}}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}}}}{\overset{(c)}{\overset{(c)}{\overset{(c)}{(c)$	$egin{array}{c} 31(a) \ (b) \ (c) \ (d) \end{array}$	32(a) (b) (c) (d)	$egin{array}{c} 33(a) \ (b) \ (c) \ (d) \ (d)$	(b)	(b) (d) (ii)
3)									
Table 1 (continued)	solar elevation (°)							38 40 53 55	
TABLE 1 (co	s ele	48 51 18	48 51 56	48 51 56		38 40 51 55		38 40 53 55	
TABLE 1 (a	s altitude ele (ft.)	$\begin{array}{ccc} 35000 & 48 \\ 25000 & 51 \\ 240 & 18 \end{array}$	35000 48 25000 51 240 56	$\begin{array}{ccc} 35000 & 48 \\ 25000 & 51 \\ 240 & 56 \end{array}$	45000 38 40000 40 25000 51	45000 38 40000 40 25000 51 240 55	45000 38 40000 40 25000 51 240 55	38 40 53 55	45000 38 40000 40 20000 53 240 55
Table 1 (α	time altitude ele (G.M.T.) (ft.)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.20 35000 48 14.00 25000 51 13.30 240 56	15.10 45000 38 14.50 40000 40 11.10 25000 51	15.10 45000 38 14.50 40000 40 11.10 25000 51 13.35 240 55	15.10 45000 38 14.50 40000 40 11.10 25000 51 13.35 240 55	45000 38 40000 40 30000 53 240 55	15.10 45000 38 14.50 40000 40 10.20 20000 53 13.35 240 55
Table 1 (α	time altitude ele (G.M.T.) (ft.)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 14.20 35000 48 29 14.00 25000 51 24 13.30 240 56	29 14.20 35000 48 29 14.00 25000 51 24 13.30 240 56	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 15.10 45000 38 15 14.50 40000 40 15 11.10 25000 51 24 13.35 240 55	15 15.10 45000 38 15 14.50 40000 40 15 11.10 25000 51 24 13.35 240 55	15.10 45000 38 14.50 40000 40 14.00 30000 53 13.35 240 55	15 15.10 45000 38 15 14.50 40000 40 29 10.20 20000 53 24 13.35 240 55
Table 1 (α	s time altitude ele month day (G.M.T.) (ft.)	July 29 14.20 35000 48 July 29 14.00 25000 51 October 22 15.00 240 18	July 29 14.20 35000 48 July 29 14.00 25000 51 May 24 13.30 240 56	July 29 14.20 35000 48 July 29 14.00 25000 51 May 24 13.30 240 56	August 15 15.10 45000 38 August 15 14.50 40000 40 August 15 11.10 25000 51 March 9 — — —	August 15 15.10 45000 38 August 15 14.50 40000 40 August 15 11.10 25000 51 May 24 13.35 240 55	August 15 15.10 45000 38 August 15 14.50 40000 40 August 15 11.10 25000 51 May 24 13.35 240 55	15 15.10 45000 38 15 14.50 40000 40 21 14.00 30000 53 24 13.35 240 55	August 15 15.10 45000 38 August 15 14.50 40000 40 July 29 10.20 20000 53 May 24 13.35 240 55

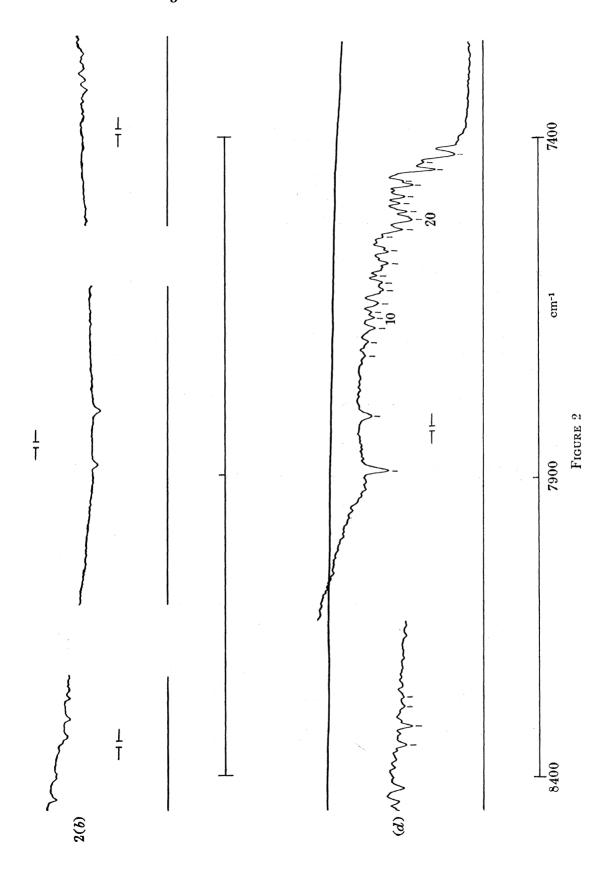
References numbered in Table 2

- Benedict, W. S., Claassen, H. H. & Shaw, J. H. 1952 J. Res. Nat. Bur. Stand. 49, 91. 363
 - Benedict, W. S. & Plyler, E. K. 1951 J. Res. Nat. Bur. Stand. 46, 246.
- Mohler, O. C., Pierce, A. K., McMath, R. R. & Goldberg, L. 1950 Photometric atlas of the near infra-red solar spectrum \(\text{8465} \) to \(\text{25242} \). University of Michigan Press. Together with the associated tables:
 - (a) Mohler, O. G. 1955 A table of solar spectrum wave lengths 11984 Å to 25578 Å. University of Michigan Press.
 (b) Babcock, H. D. & Moore, C. E. 1947 The solar spectrum λ6600 to λ13495 Å. Carnegie Instn. of Washington Publ. 579.
- Migeotte, M., Neven, L. & Swensson, J. 1956 The solar spectrum from 2.8 to 23.7 microns. Parts I and II. Special Vols. Mém. Soc. R. Sci. Liège.
 - Nielsen, H. H. 1941 Phys. Rev. 59, 565.
- Nielsen, H. H. 1942 Phys. Rev. 62, 422.
- Nielsen, H. H. & Yao, Y. T. 1945 Phys. Rev. 68, 173.
- Shaw, J. H., Chapman, R. M., Howard, J. N. & Oxholm, M. L. 1951 Astrophys. J. 113, 268.

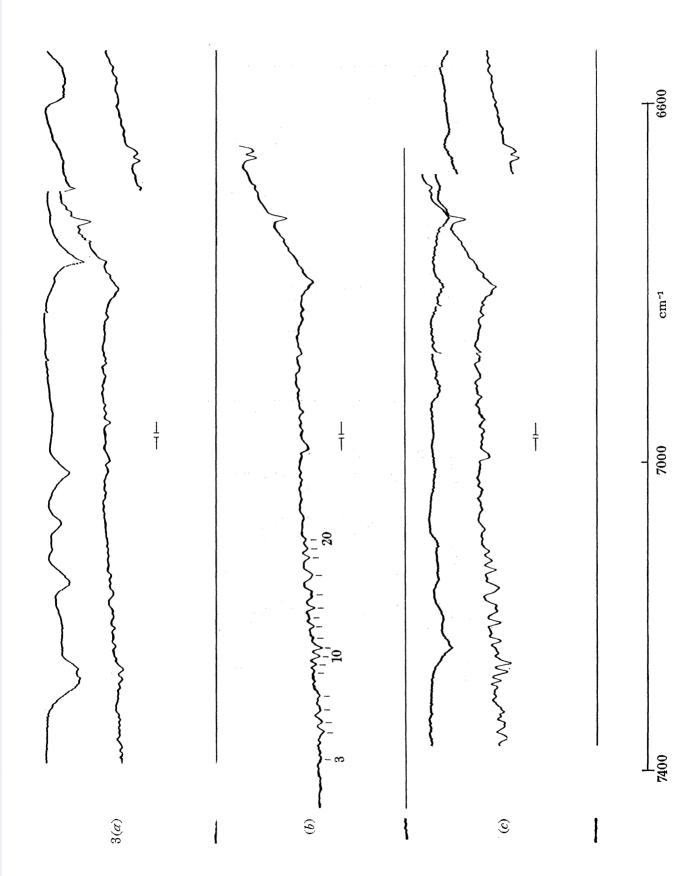
54

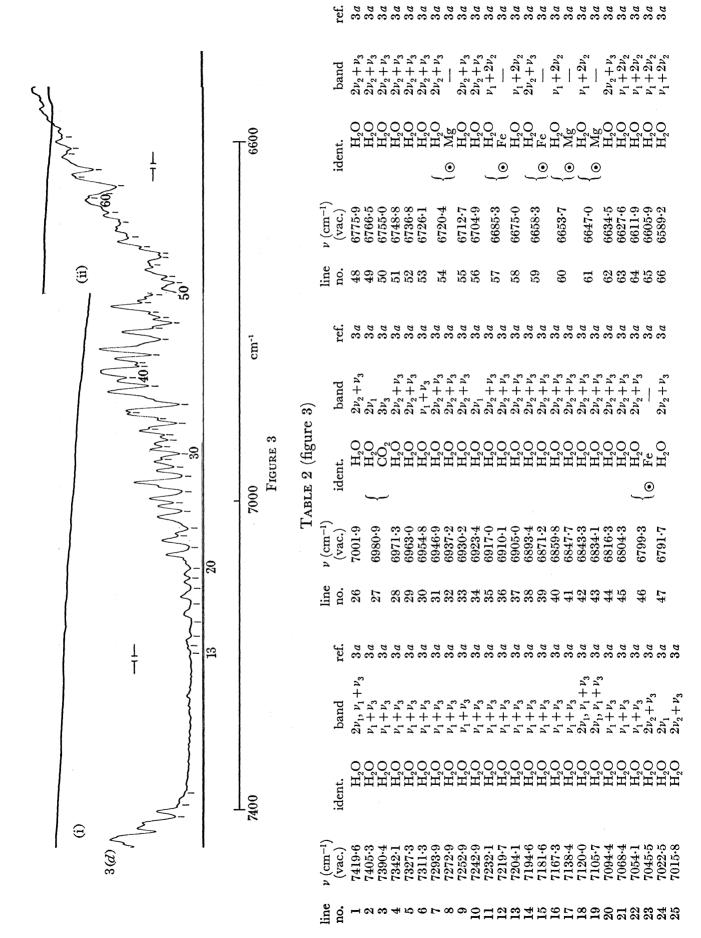
band ident. v (cm⁻¹) (vac.) 9018.7 8998.4 8982.3 8967.8 8941.3 8941.3 8941.3 89941.3 89941.3 89941.3 8884.1 8884.1 8884.1 8886.0 8811.3 8783.4 877.7 877. TABLE 2 (figure 1) High spaces of the spaces of t $\nu_1 + \nu_2 + \nu_3 \\ \nu_1 + \nu_2 + \nu_3 \\ - - + \nu_3$ £ ~ Signal of the state of the st | ⊙

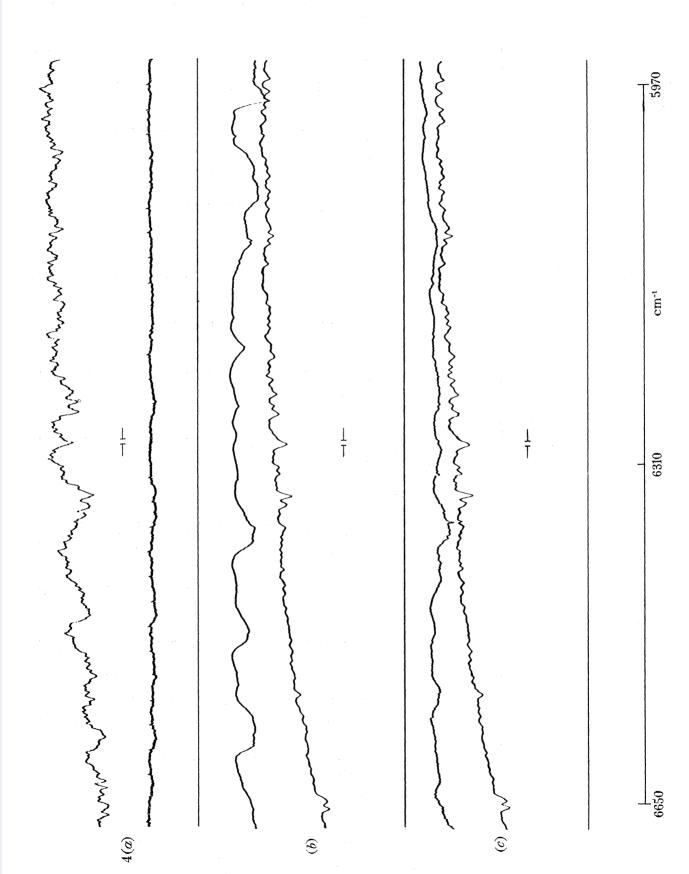
9337·1 9319·7 9300·6 9267·9

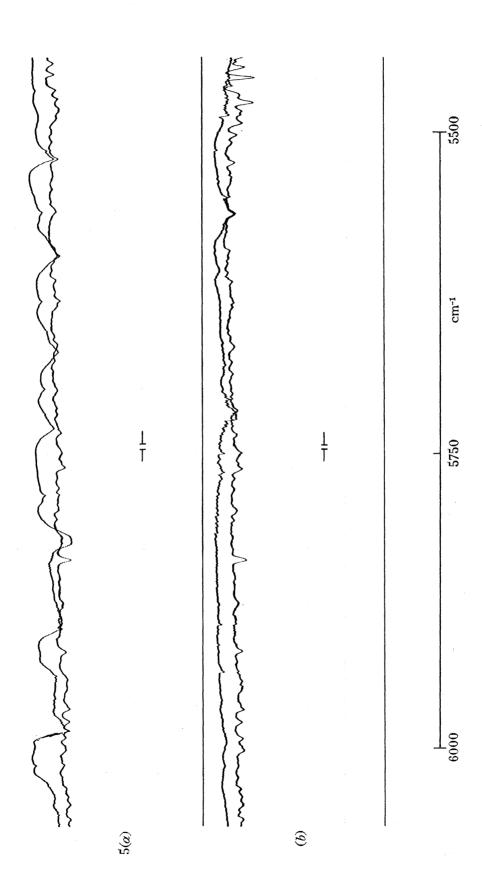

9233.6

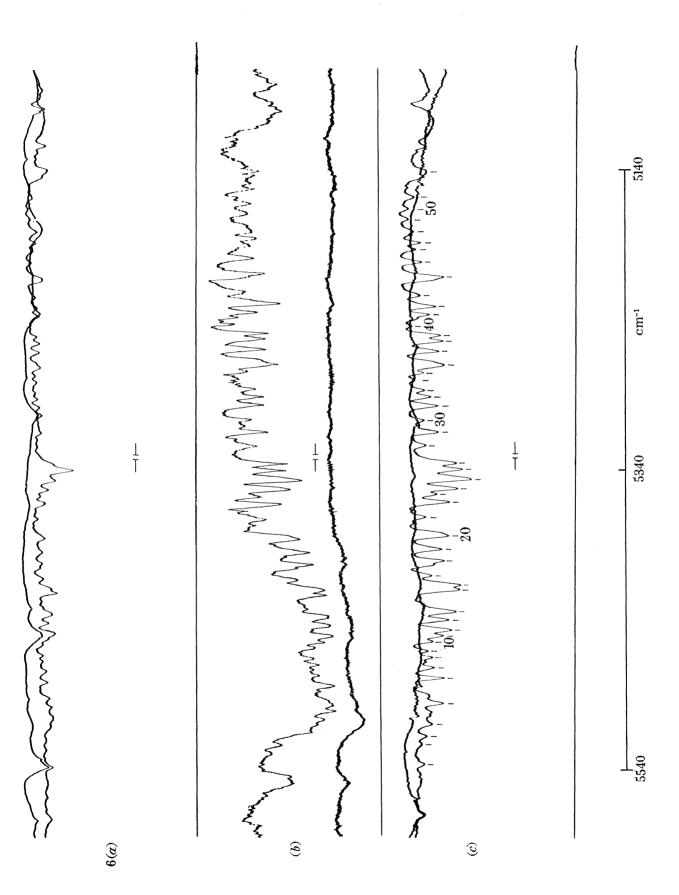
9219.2

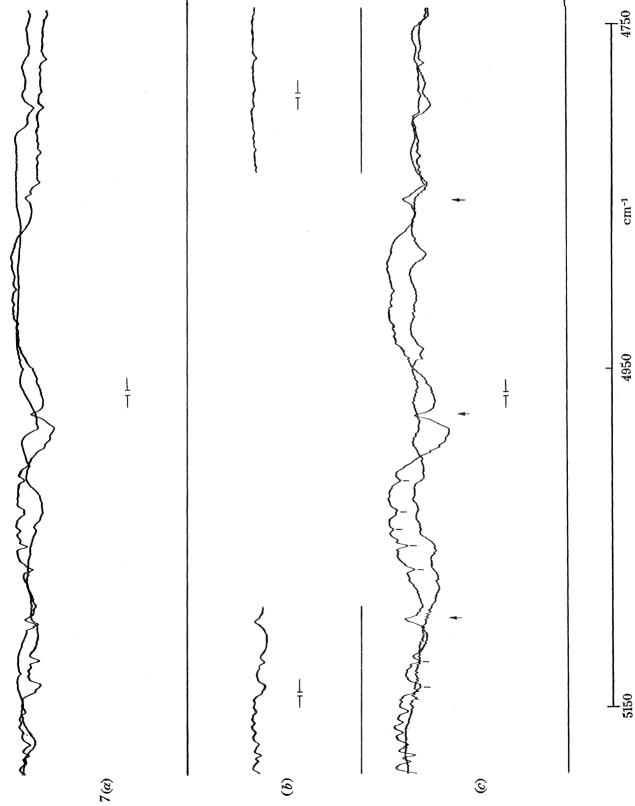

9560.4 9444.7 9428.7 9406.5 9377.4

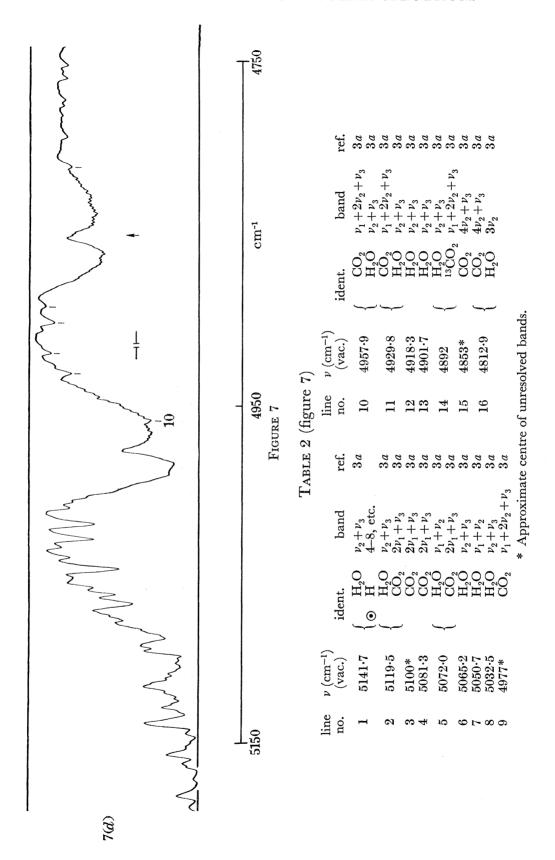

 $9351 \cdot 1$

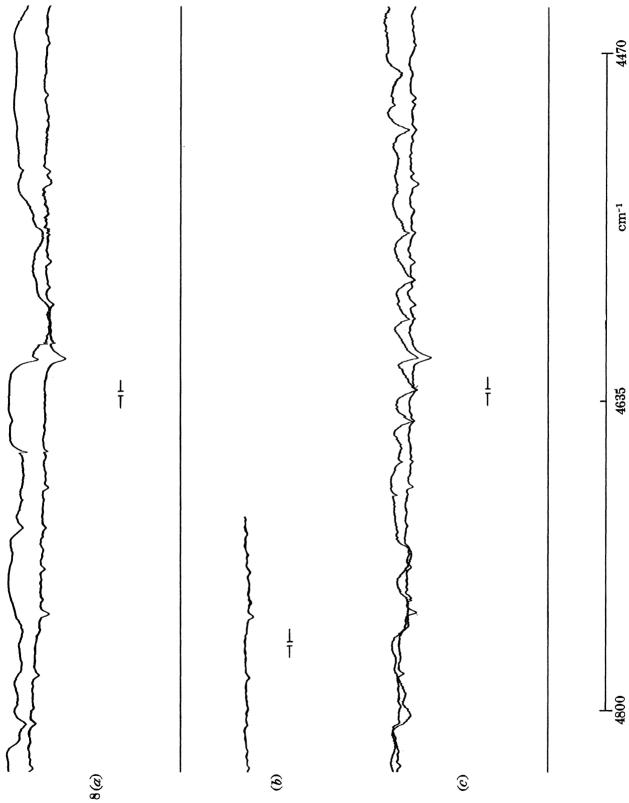

2.0896 9664.8 9205.6 9197.1 9171.0 9152.5 9139.1 9124.1 9107.5 9093.4 9073.6


	ref.	3a $3a$	33 g 30 g 30 g	3 20 20	900	3a	3a 3a	3a	3 3 8 3 8 3 8	
	band	$\nu_1 + \nu_3, 2\nu_3$	$2\nu_3 \\ 2\nu_3 \\ \nu + \nu_2 \\ 2\nu_3$	$v_1 + v_3, 2v_3$	$v_1 + v_3 = v_3$ $v_1 + v_3$ $v_2 + v_3 = v_3$	$ \nu_1 + \nu_3, \nu_3 \\ \nu_1 + \nu_3, 2\nu_3 $	273 273	$2\nu_1, 2\nu_3 \ 2\nu_1, \nu_1 + \nu_2$	$2\nu_1, \nu_1 + \nu_3$ $2\nu_1, \nu_1 + \nu_3$	
	ident.	$\left\{ \begin{smallmatrix} H_2O\\ O&AI \end{smallmatrix} \right.$	H H 200	E H	H ₂ O	$^{112}_{ m 2O}$	H20 H30	H20 H20	H20 H30	4
	$\nu (\mathrm{cm}^{-1})$ (vac.)	7601.9	7593·0 7575·1 7557·2	7536·0 7524·0	7511.0	7484.9	7476·7 7466·4	7461.2 7437.2	7431.7 7419.6	
(figure 2	line no.	14	15 16	81 6	86	22	8 2	25 26	24 28 28	
TABLE 2 (ref.	3 <i>a</i> 3 <i>a</i>	თ თ თ თ <i>a</i>			3 c	3 3 8	အ <u>အ</u> အ အ	3a 3a	3 <i>a</i> 3 <i>a</i>
	band	$3\nu_2 + \nu_3$	$3\nu_2 + \nu_3 \\$	$\frac{1}{3\nu_{c}+\nu_{c}}$	$3\nu_2 + \nu_3$	3-5	20 20 20 33	20 20 30 50 50 50 50 50 50 50 50 50 50 50 50 50	$25^{\circ}_{\nu_3}$	$2\nu_3$
	ident.	$\left\{ \begin{array}{cc} \bullet & \mathrm{Si} \\ \mathrm{H}_2\mathrm{O} \end{array} \right.$	© Si CO, CO,		$H_2^{1/2}$	H ⁷	H,0 H,0	H ₂ O H ₂ O	H ₂ O H ₂ O	$\begin{cases} & \text{H}_2^2 \text{O} \\ & \text{Ca} \end{cases}$
	$ \nu (\mathrm{cm}^{-1}) $ (vac.)	8341.7	8307.4	8273.4	8255.2	7799-3	7704.2 7685.9	$7667.0 \\ 7653.1$	7644·6 7633·8	7612.0
	line no.	, ,	61	က	41 rc	ာဏ	r	90	11	13




5970 6172-2 6155-2 6127-1 6102-7 6096-4 6079-2 6063-8 6002·5 5993·2 cm-1 $\nu_1 + 4\nu_2 + \nu_3$ Table 2 (figure 4) FIGURE 4 6263.9 $6246 \cdot 2$ 6292.16232.4v (cm⁻¹) (vac.) 6605·9 6589·2 6536·4 6493·9 6435·6 6425.86412.0 6399.66370.96358.2 122473 9 7 8 6



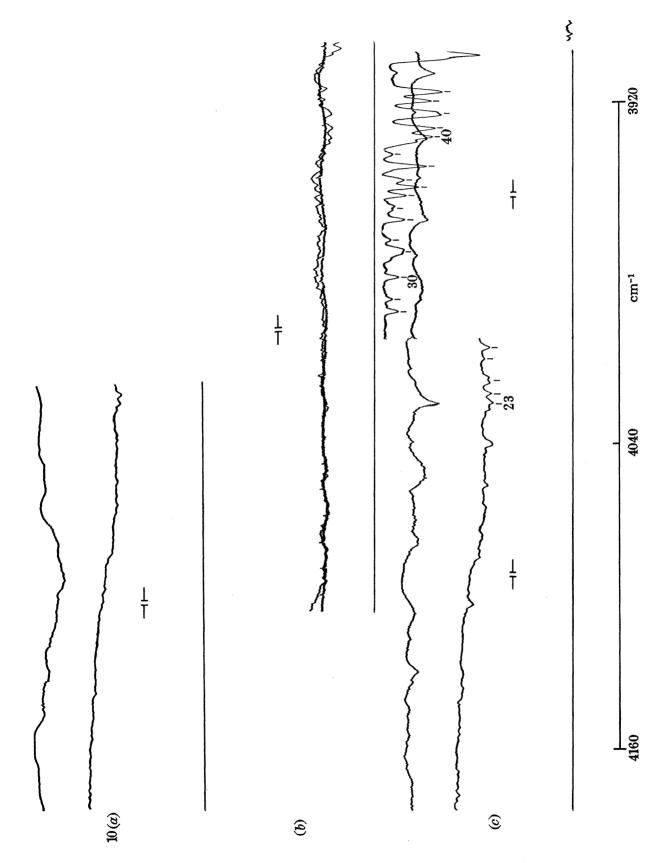

Ξ 5500 I ident. (cm⁻¹) (vac.) (vac.) 5621.6 5614.0 5602.8 55990.2 5585.1 55885.1 55574.3 55770.1 5557.8 5527.8 5521.1 5521.2 55498.9 cm-1 $\begin{array}{c} \nu_2 + \nu_3 \\ \nu_2 + \nu_3 \end{array}$ $\nu_2 + \nu_3 \\ \nu_2 + \nu_3 \\ -$ Table 2 (figure 5) FIGURE 5 H₂O Si H₂O 5750 ident. 5742.8 5732.4 5724.9 5709.2 5697.4 5690.0 5671.9 5662.7 5667.3 5687.3 5687.3 5801.95784.0 5759.9 5747.6 I CH SS: 4 5(d) _ _ • $\odot \odot \odot$ \odot 5852.7 5843.4 5833.2 5979.5 5968.35993.25891.7 5880.4 5827.1 5809.0 5938.15915.110 θ Vol. 254.

(vac.) (vac.) 5265.9 5266.6 5250.1 5246.6 5239.9 5232.2 5227.5 5220.3 5210.6 5199.0 5181.9 5181.9 5152.0 5141.7 Table 2 (figure 6) FIGURE 6 5388.0 5378.7 5366.1 5354.9 5350.8 5346.4 5339.9 v (cm⁻¹) (vac.) 5536·1 55511 5516·0 5507·6 5495·8 5445·2 5448·0 5448·0 5448·0 5448·0 5448·0 5448·0 5448·0 5448·0 5448·0 5448·0 5448·0 5448·0 5448·0 5448·0 5448·0

4470 ident. cm-1 • 4598·7 4594·9 4590·1 4580·0 4576·8 4569.84565.1 4549.0 4543.5 4543.5 4535.3 4532.6 4512.6 4493.9 4481.0 Table 2 (figure 8) FIGURE 8 I T CH H 20 0000 0000 CH H 20 0000 ident. • • • • (vac.) (vac.) 4796.4 4775.8 4764.6 4775.9 4775.0 4739.6 4735.2 4720.1 4707.2 4699.7 4681.6 4648.2 4611.1 4602.7

70

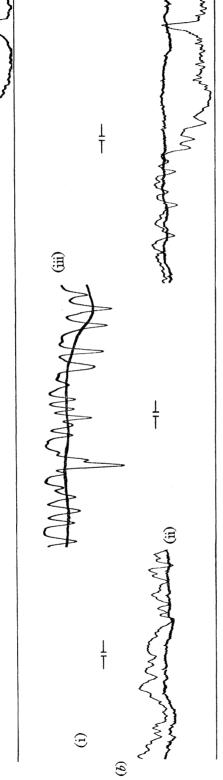
MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

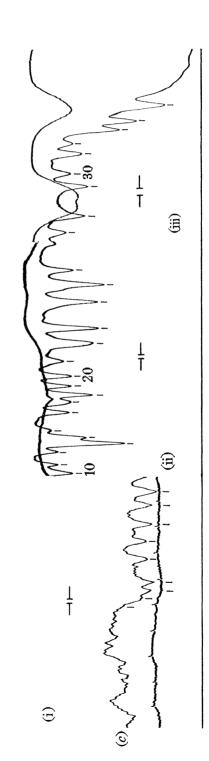

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

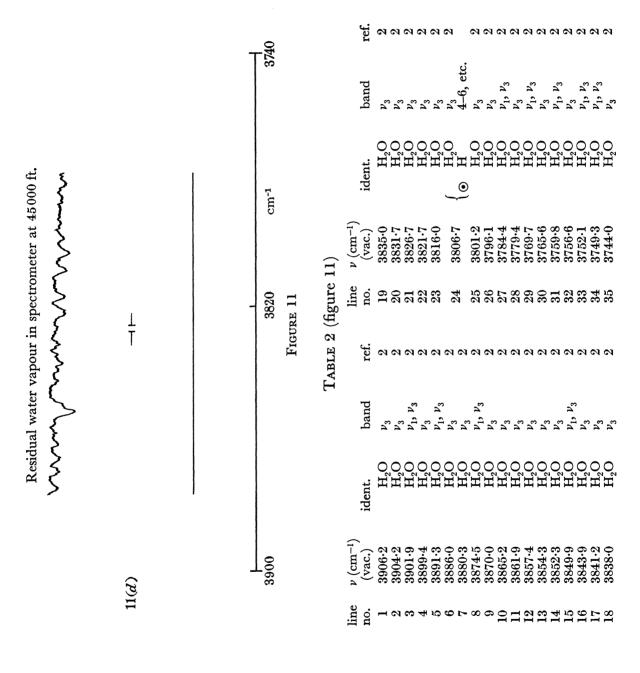
$\frac{1}{T}$ cm^{-1} (i:) I T I T 4310 \odot હ 9(a) (p)

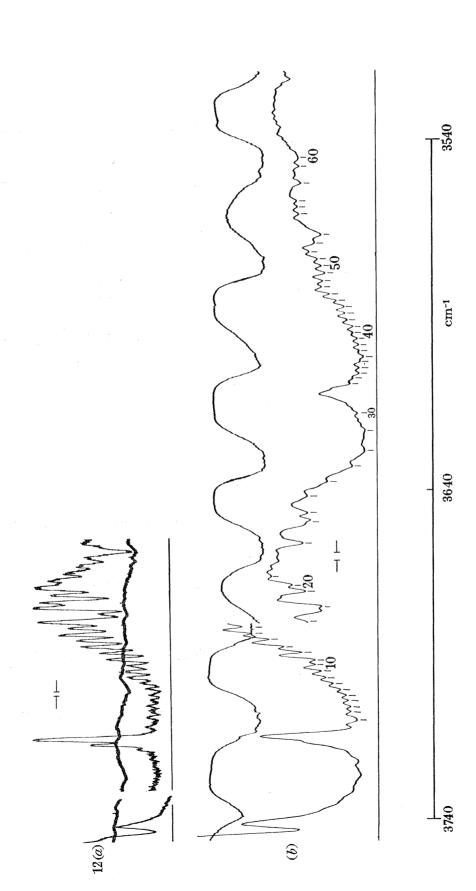

4150 ident. 4230·1 4224·3 4208.0 4204.8 4200.2 4194.5 4191.1 4187.3 4181.5 4176.4 4171.3 4165.9 4159.2 4218.3 cm-1 (ii)band Table 2 (figure 9) FIGURE 9 4310 ident. 4294·5 4288·8 4281.7 4306.7 26(i)4449.9 4435.8 4430.8 4421.4 4415.5 4400.5 4394.3 4394.3 4394.3 4384.3 4380.6 4375.6 4367.0 4365.1

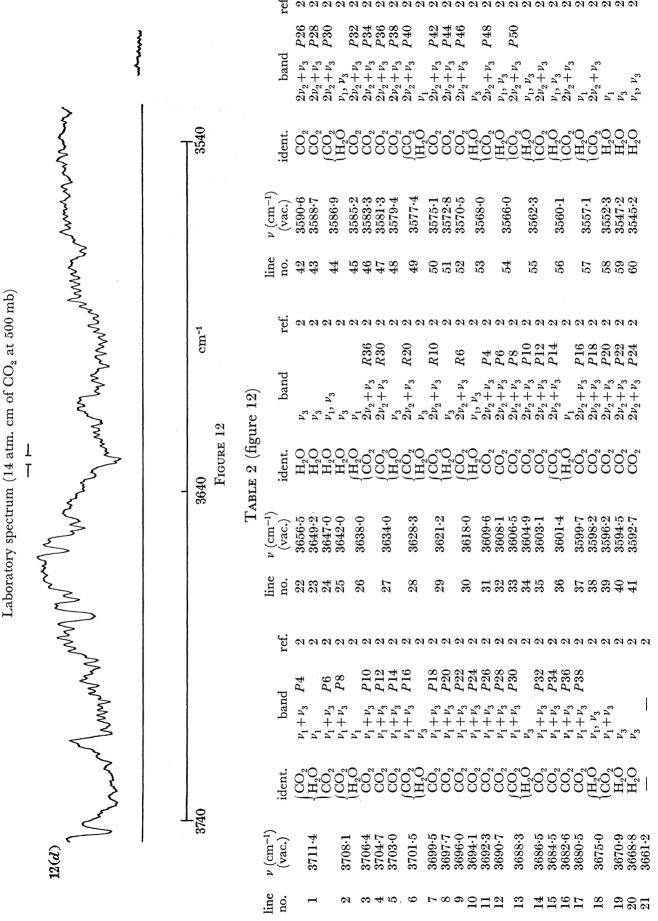


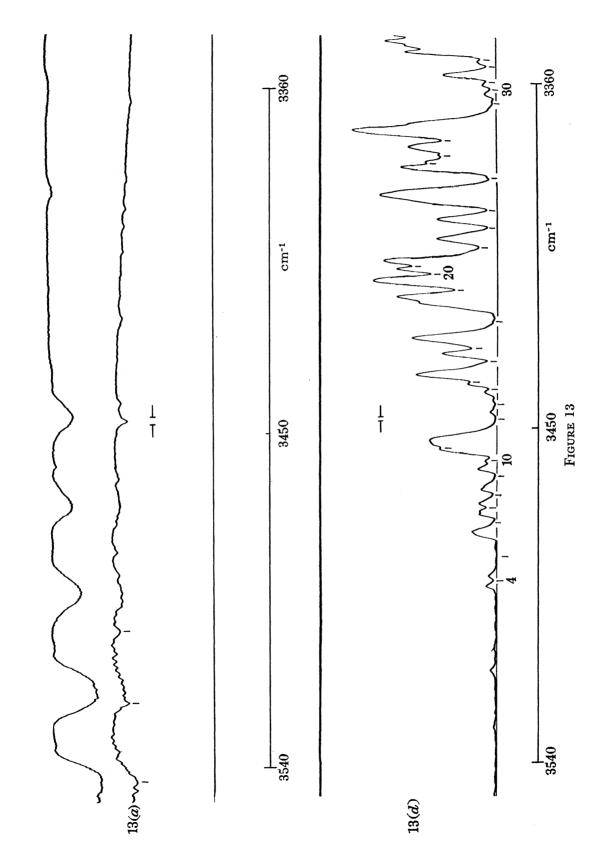
- OF-

band all ν_1 , ν_3 cm-1 I $\nu \text{ (cm}^{-1})$ (vac.) 4031.4 4025.4 4019.5 4019.7 4008.6 3995.0 3995.0 3969.4 3961.9 3957.1 3957.1 3957.1 3950.1 3950.1 3950.1 3950.1 3950.1 3950.1 3950.1 3950.1 3950.1 3950.1 3950.1 3950.1 Table 2 (figure 10) 4040 FIGURE 10 all ν_1 , ν_3 band 2 v (cm⁻¹) (vac.) (vac.) 4149 \cdot 5 4146 \cdot 3 41411 \cdot 9 4138 \cdot 8 4133 \cdot 6 4125 \cdot 2 4121 \cdot 4 4109 \cdot 5 4106 \cdot 0 4093 \cdot 5 4006 \cdot 1 4079 \cdot 3 4079 \cdot 3 4079 \cdot 3 4079 \cdot 3 4079 \cdot 4 4086 \cdot 1 4066 \cdot 1 4066 \cdot 1 4066 \cdot 1 4066 \cdot 2 4044 \cdot 5 4036 \cdot 4 4036 \cdot 5 4036 \cdot 5 4036 \cdot 7 4006 \cdot 7 4006 \cdot 1 400 \cdot 1 40 10(d)

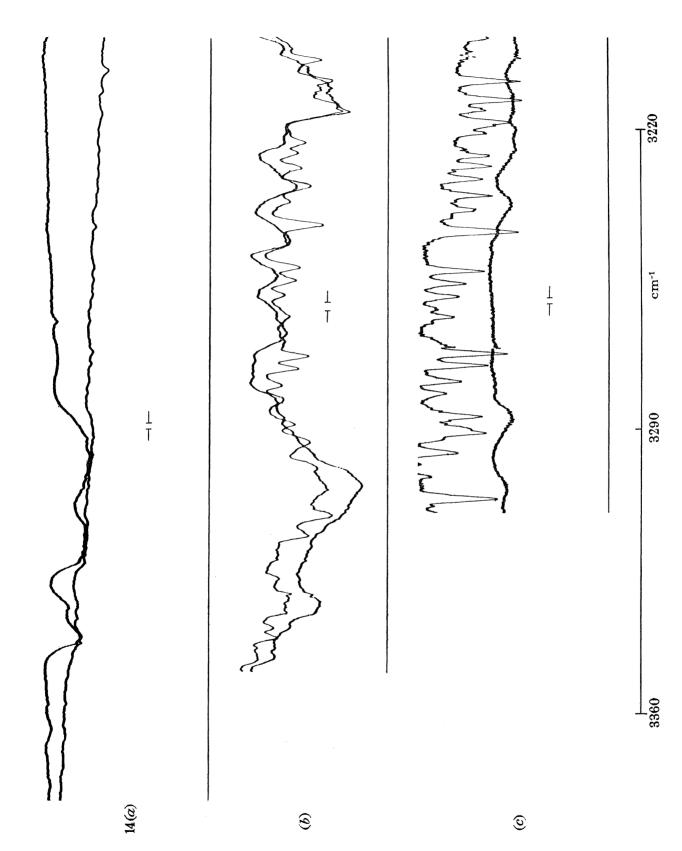


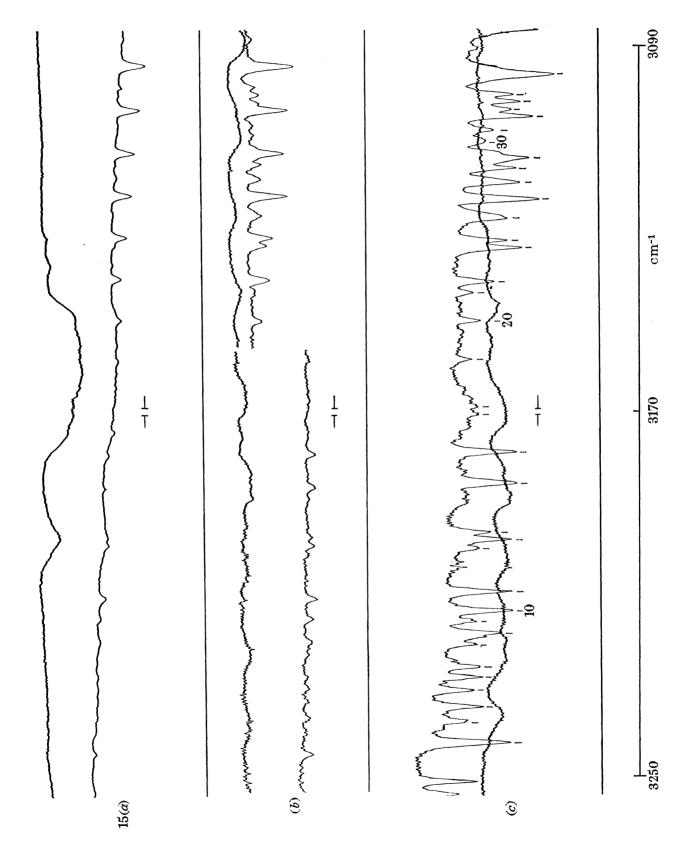






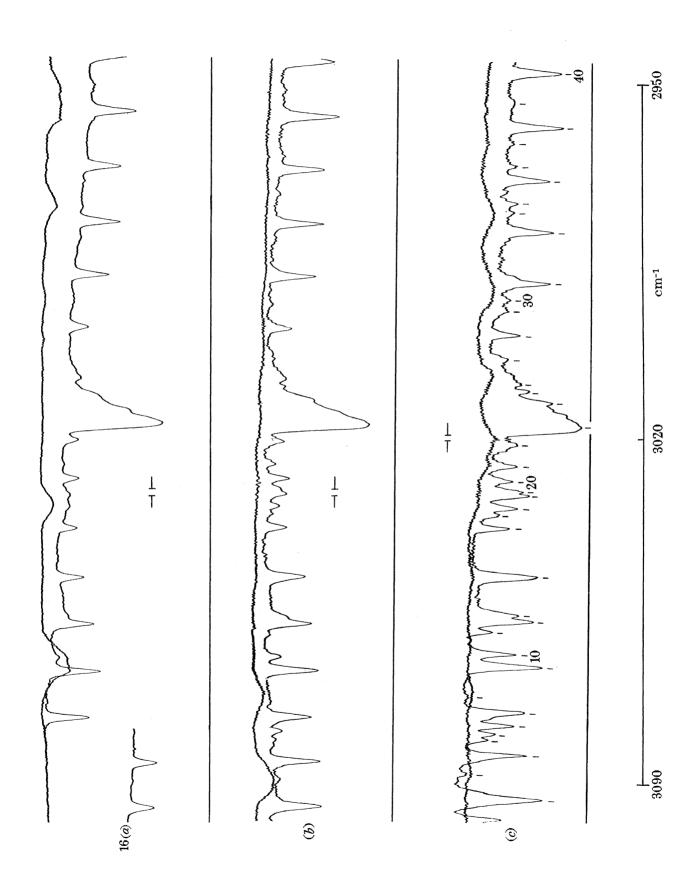
3900

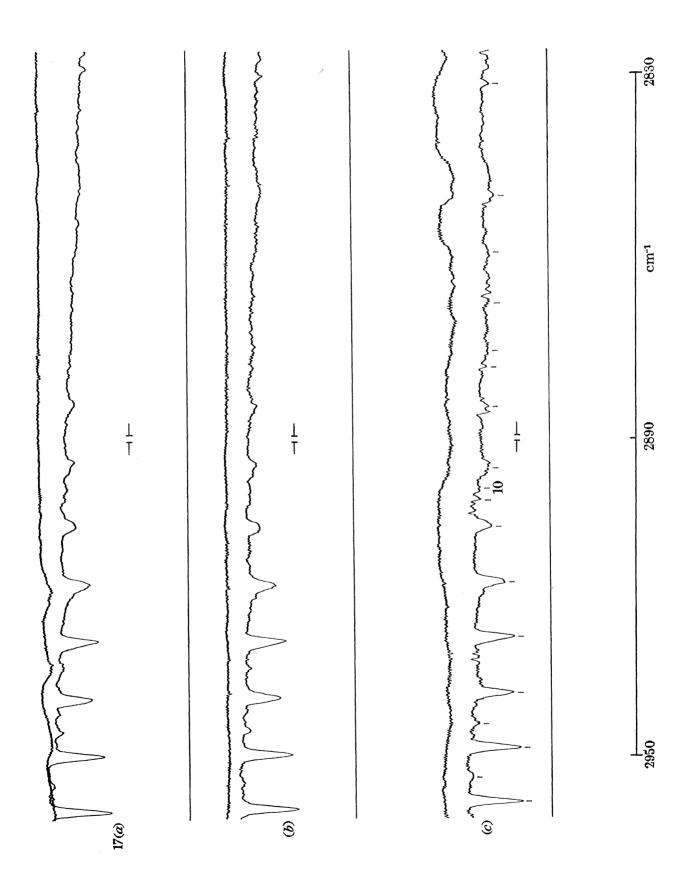




		re	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
3)		band	ν_3	7 1	ν_3	<i>V</i> ₃	° ~ ′	$2\hat{\nu}_2, \nu_1$	7 74	$\nu_1, 2\nu_2$	2ν , ²	7,7	$2\dot{\nu}_{ m s}$	7,7	$2^{i}_{\nu_{s}}$	۷, 2	7, 7	7،	$2\tilde{\nu}_{s}$	1
		ident.	$\mathrm{H_2O}$	${ m H_2O}$	${ m H_2O}$	H,0	H_0^2O	$ m H_{ m 0}^{2}O$	$H_{0}^{2}O$	$_{ m H}^{2}$	H_0^2	H_0^2	H_{0}^{2}	$_{ m H,O}$	H_{0}^{2}	$H_{2}^{2}O$	$_{ m H}^{2}$	$H_{2}^{\prime}O$	$_{ m H}$	1
	$\nu~({ m cm}^{-1})$	(vac.)	3427.9	3420.4	3413.0	3408.8	3406.7	3403.6	3397.2	3392.7	3385.6	3380.4	3377.5	3374.7	3365.7	3361.6	3359.5	3355.6	3353.7	
(figure 1	line	no.	17	8	19	20	21	55	23	24	22	56	27	5 8	53	30	31	32	33	
TABLE 2		ref.	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
		band	ν_1, ν_3	$2\nu_2 + \nu_3$	ν_3	$2\nu_2 + \nu_3$, ''	, ₁	$\nu_3^* \nu_1$	V ₁ , V ₃	ν_3, ν_1	, , ,	$2\tilde{\nu}_2, \nu_3$	ν ₃	, ₂ ,	, ₁ ,	, ₁	$2\hat{\nu}_2, \nu_3$, 'a
		ident.	$f\mathrm{H_2O}$	$\frac{13CO_2}{12CO_2}$	$/\mathrm{H}_2\mathrm{O}$	(13CO)	$^{-}$ O $_{-}$ H	$H_2^{-}O$	$H_{0}^{2}O$	H_0^2 O	H_0^2	H_0^2	H_0^2 O	H_0^2	H_0^2O	H_0^2	$_{0}^{-}$	$H_{2}^{2}O$	$H_2^{-}O$	Ή̈́
	$\nu (\mathrm{cm}^{-1})$	(vac.)	3545.9	7 OTOO	3528.0		$3503 \cdot 0$	3496.7	3488.2	3474.8	3470.5	3467.2	3461.4	3455.7	3453.2	3446.6	3442.3	3440.1	3438.1	3430.0
	line	ou.	_	4	c.	ı	က	4	ŭ	9	7	œ	ර	10	11	12	13	14	15	16

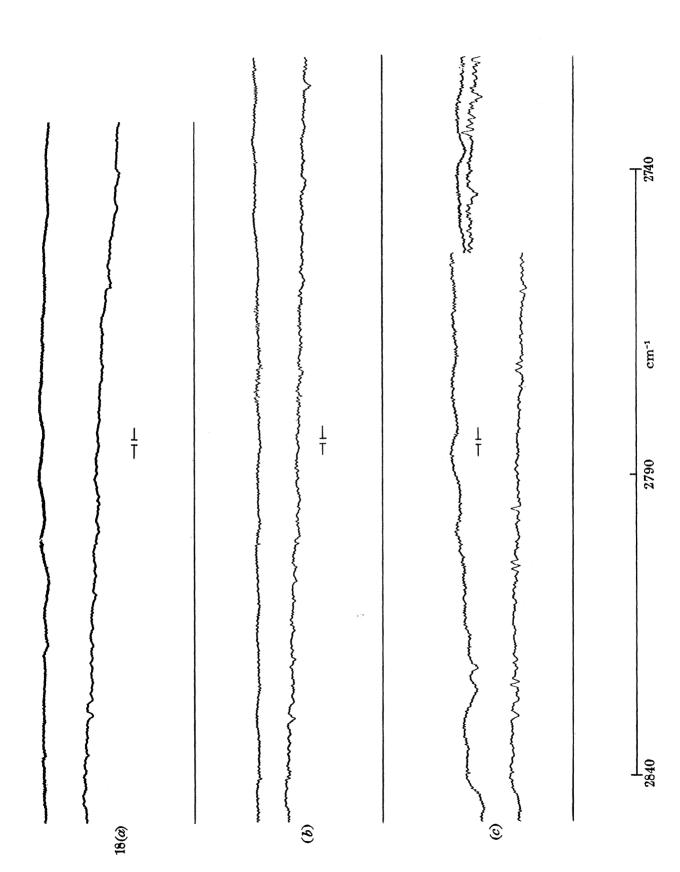
3220cm-1 30 3308.5 3303.2 3300.0 3297.4 3292.6 3288.5 3288.5 3280.0 3275 3265.0 3263.8 3260.4 3257.1 3254.0 3249.4 3282.9Table 2 (figure 14) 118 119 120 120 120 121 122 123 124 133 134 134 FIGURE 14 3290 (vac.) 3355·6 3353·7 3351·2 3348·4 3346·0 3342·3 3340·1 3339·0 3336·7 3334·5 3324.63327.4 3323.03360 12


82

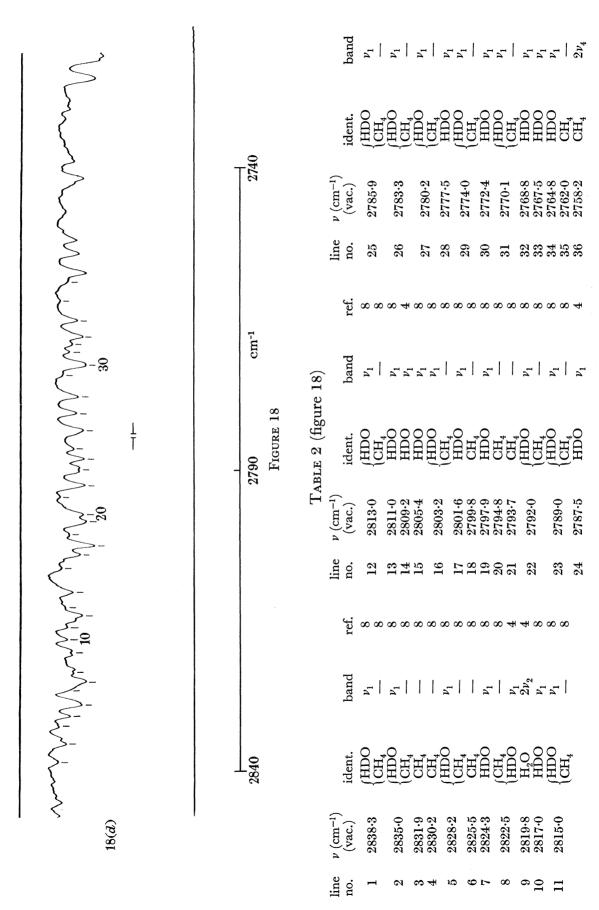

$\begin{array}{c} \nu_3 \\ 2\nu_2 \\ 2\nu_2 \end{array}$ $\nu \text{ (cm}^{-1})$ (vac.) 3140.1 3133.1 3131.4 3109.6 3107.3 3104.4 3103.1 3101.2 3126.03122.93115.93113.33099.63095.23119.1Table 2 (figure 15) 293170 FIGURE 15 3245.1 3240.0 3236.6 3232.9 3232.0 3222.0 3222.0 3219.3 3214.1 3209.8 3114.1 3209.8 31185.2 31185.2 31185.2 31185.2 31185.2 31185.2 31185.2 31185.2 31185.2 31185.2

3250

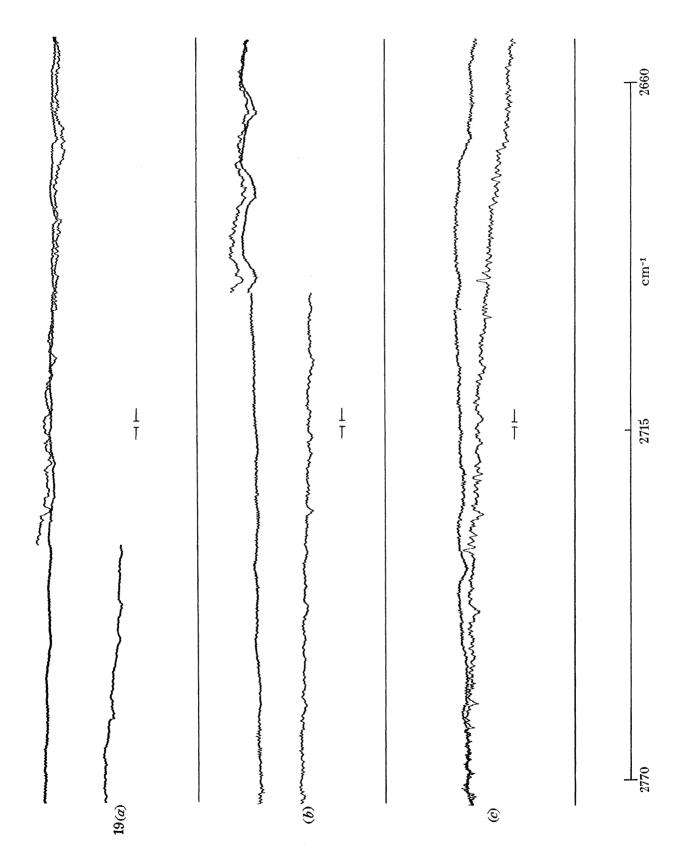
15(d)

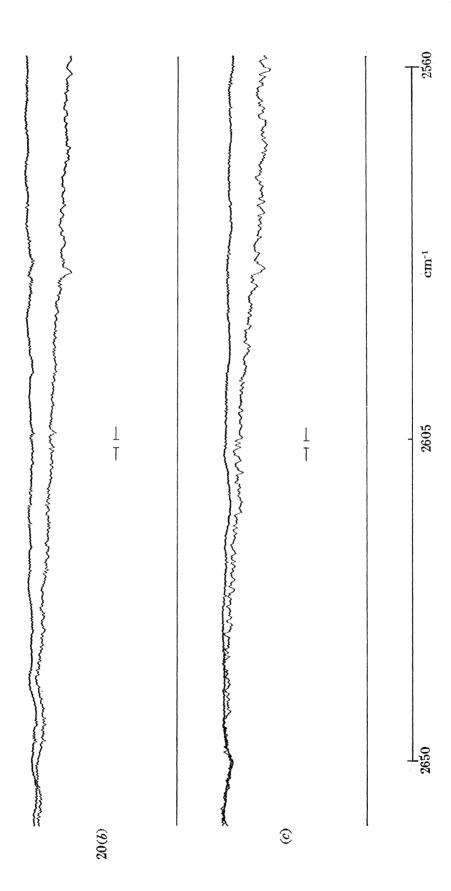


band $\begin{array}{ccc} 2\nu_2 \\ \nu_3 & P3 \\ \hline \nu_3 & P4 \end{array}$ 2961.5 2958.3 2953.6 2947.9 2978.92975.2 $2973\cdot 3\\2968\cdot 6$ 2994.4 2988.82966.02991.929cm-1 30 35 36 37 39 39 40 3132 33 34band R1 Table 2 (figure 16) I T 3020 FIGURE 16 3031.9 3030.8 3028.83025.83008-9 3003-7 2998-9 3034.4 3017.33010.3 $3021 \cdot 1$ 3012.4line no. 15 16 16 17 17 18 19 20 20 22 23 24 25 26 27 28 R5R4 $_{060}$ 16(d)3082.6 3081.33073·3 3067·2 3064·3 3095.2 3086.03079.63076.73059.93089.73057·7 3056·4 3048.4 8 0 11 11 11 11 11 11 11 45 θ



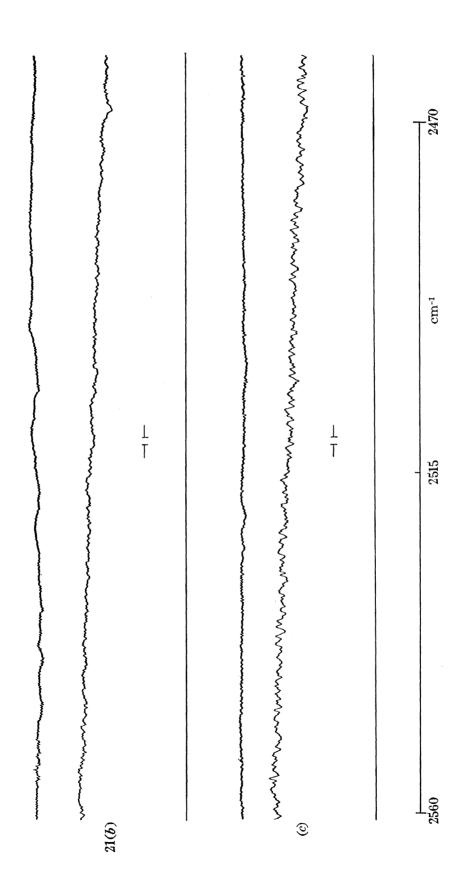
identification in the state of $\nu \text{ (cm}^{-1})$ (vac.) $2900 \cdot 0$ $2896 \cdot 0$ $2885 \cdot 1$ $2878 \cdot 4$ $2874 \cdot 8$ $2864 \cdot 8$ $2864 \cdot 8$ 2841.7 Table 2 (figure 17) FIGURE 17 I ν (cm⁻¹) (vac.) 2958·3 2953·6 2947·9 2943·3 2937·8 2927·3 2906·7 2906·7 17(d)


88

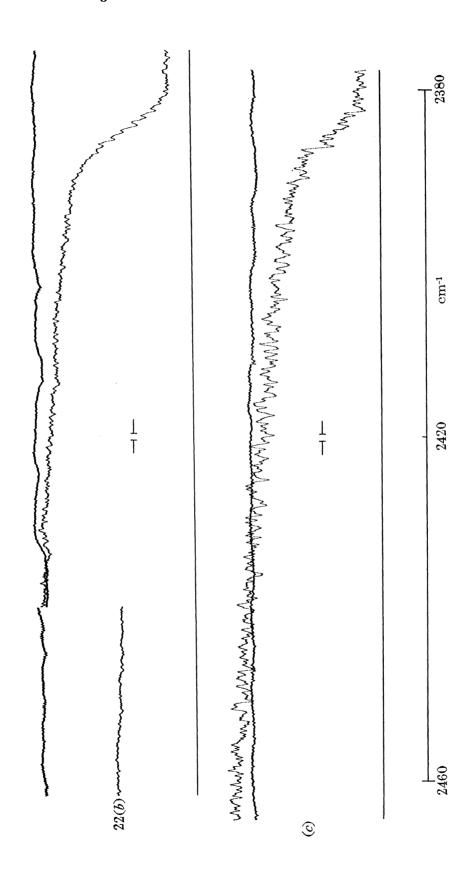

£ ∞∞∞∞∞∞∞∞∞+∞∞+∞∞∞+

90

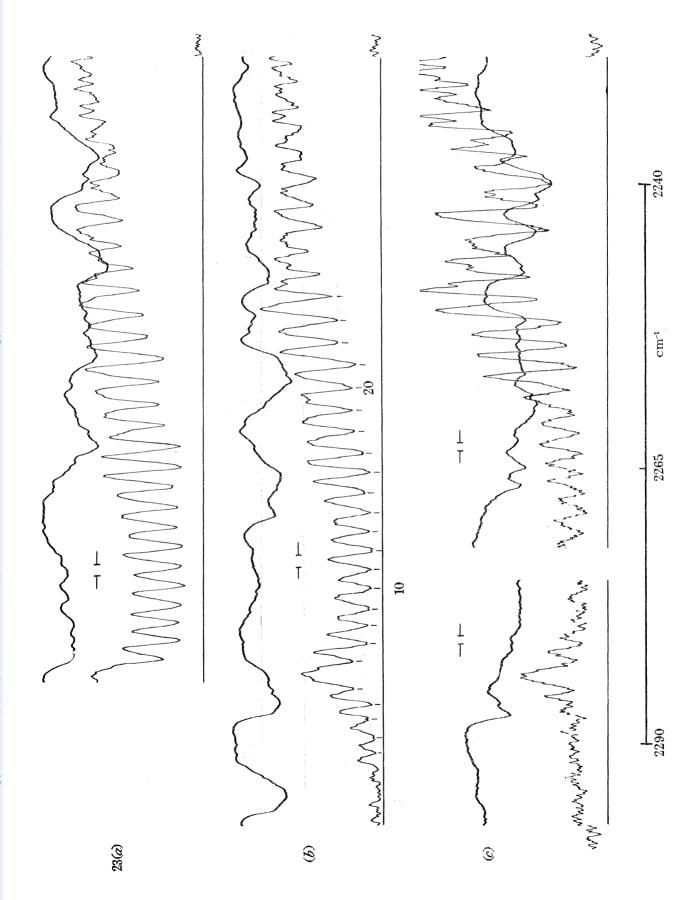
26602666.4 2663.3 2660.6 2659.6 2695.5 2693.1 2690.1 2680.9 2697.62678.0 2672.8 2669.92676·7 2675·4 Table 2 (figure 19) FIGURE 19 \$\frac{9}{4}11 | \frac{9}{4}11 | \frac{9}{4}11 \frac{9}{4} (cm⁻¹) (vac.) 2756·9 2756·9 2756·9 2751·6 2751·6 2728·9 2738·9 2729·9 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6 2728·6

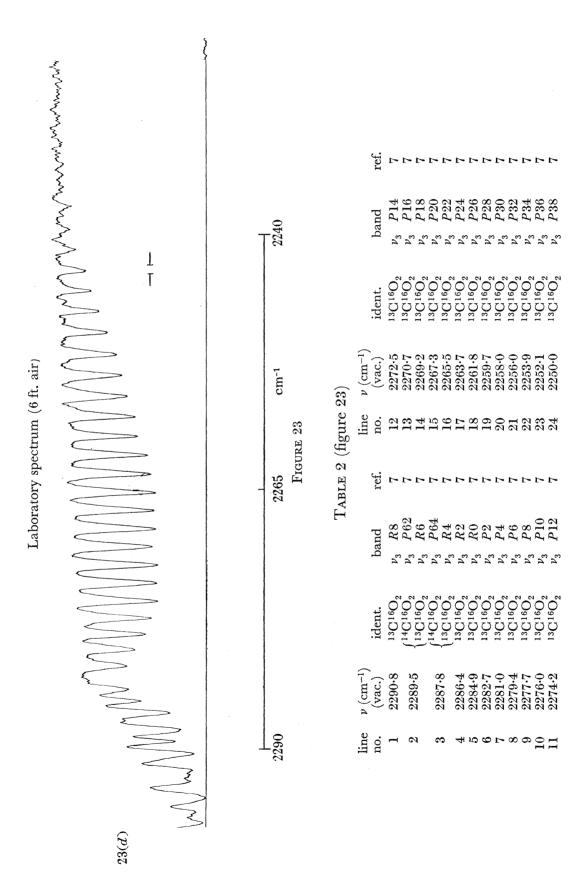


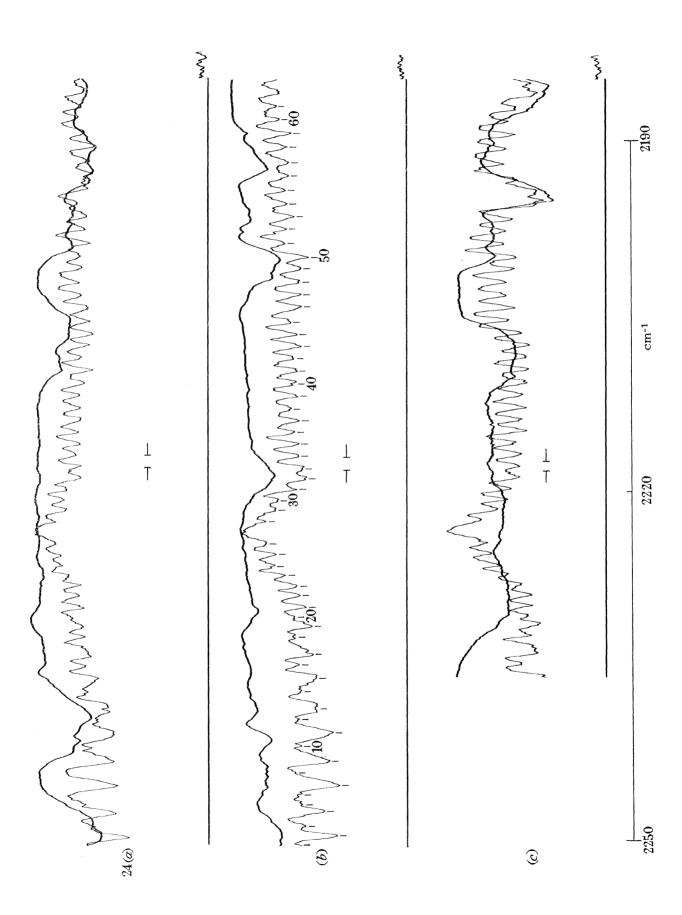
2580.8

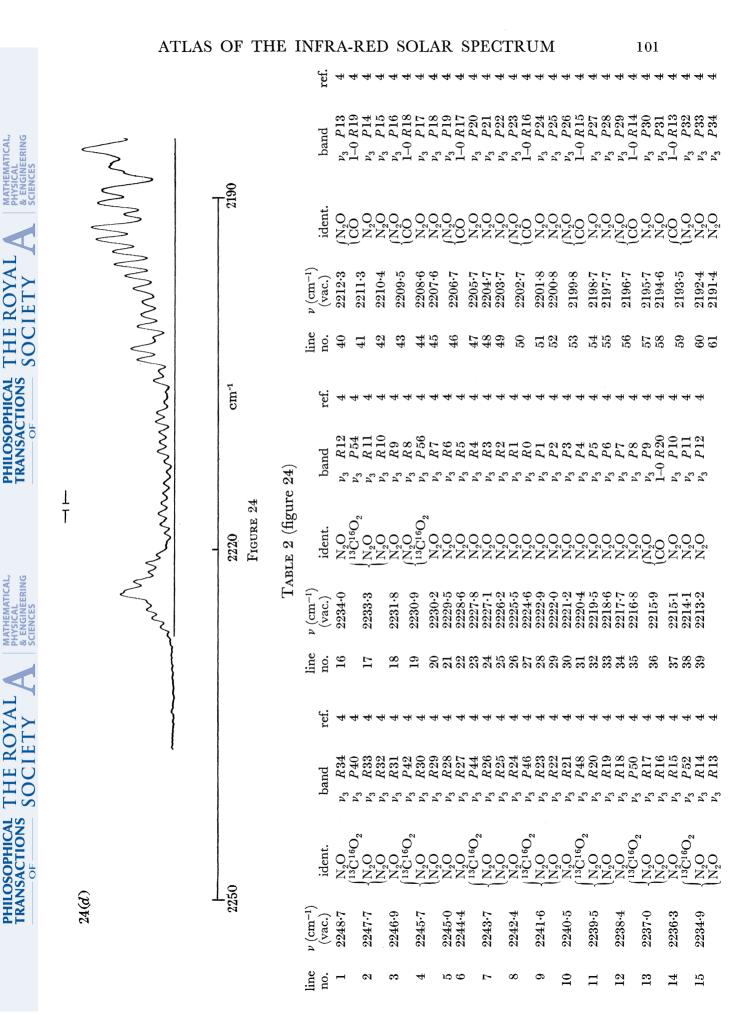

29

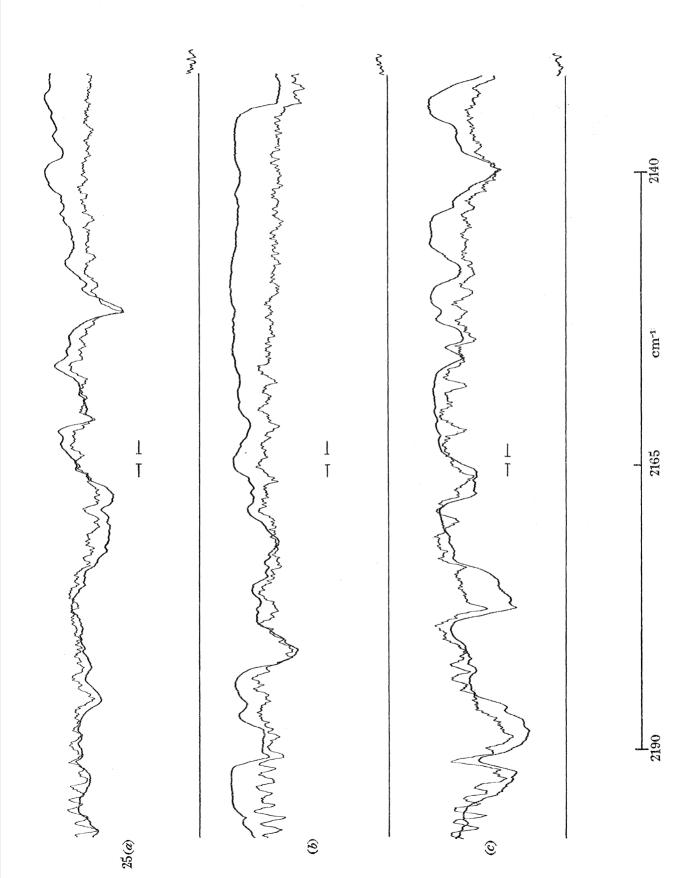
2625.52624.32622.3 * N_2O band centre $3.9\,\mu$.

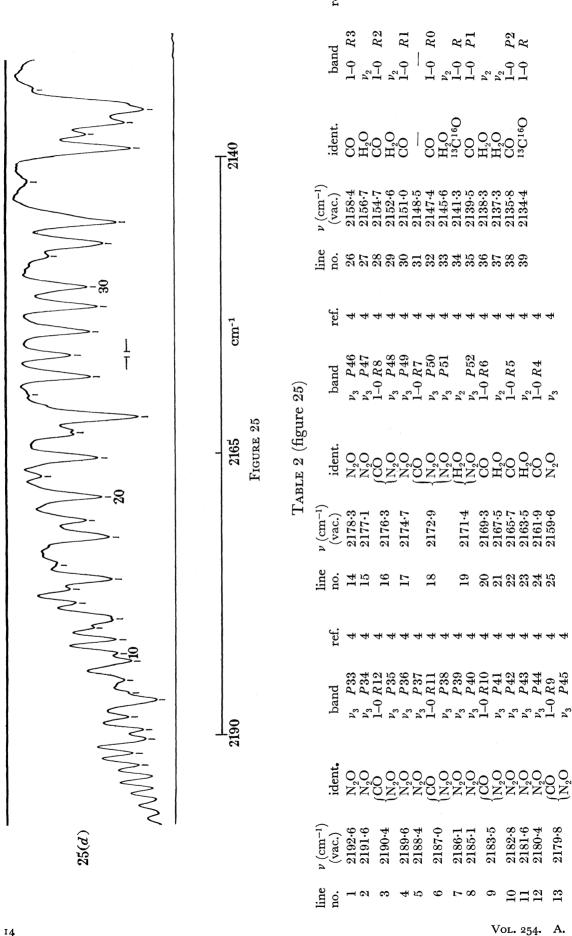

2560" | \$\frac{9}{4} \rangle \frac{7}{4} \rangle \ cm-1 | He had been constructed by the construction of the construction $\begin{array}{c} 2588.5 \\ 2586.1 \end{array}$ 2618.5 2612.7 2608.4 2607.7 2605.3 2601.0 2596.9 2593.62591.22582.2Table 2 (figure 20) 2605 Figure 20 ident. id $\nu \, ({\rm cm}^{-1})$ (vac.) 2657.5 $\begin{array}{c} 2633.1 \\ 2628.8 \end{array}$ 2651.92649.52644.62642.32638.82637.52655.62635.7

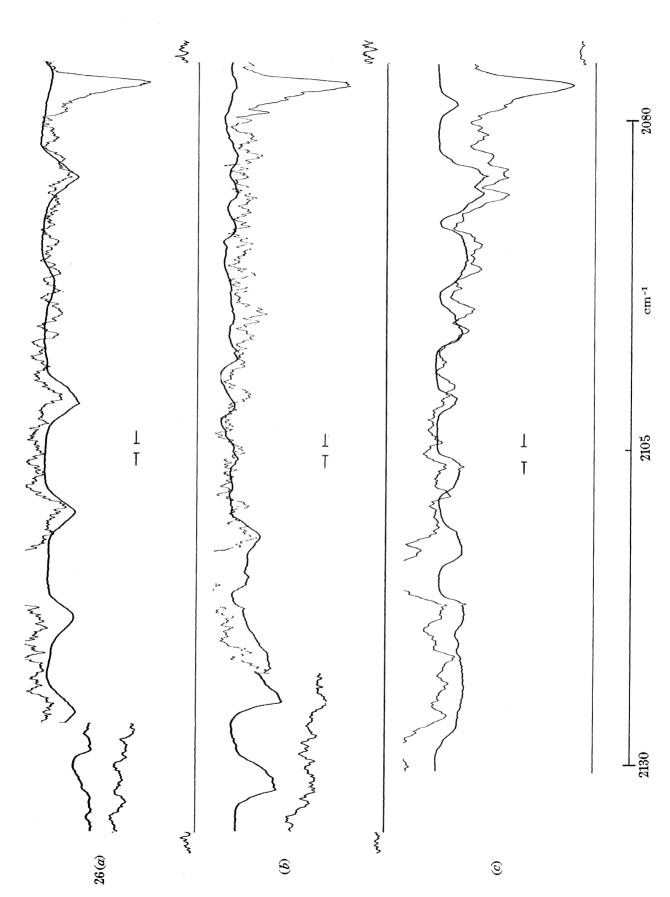


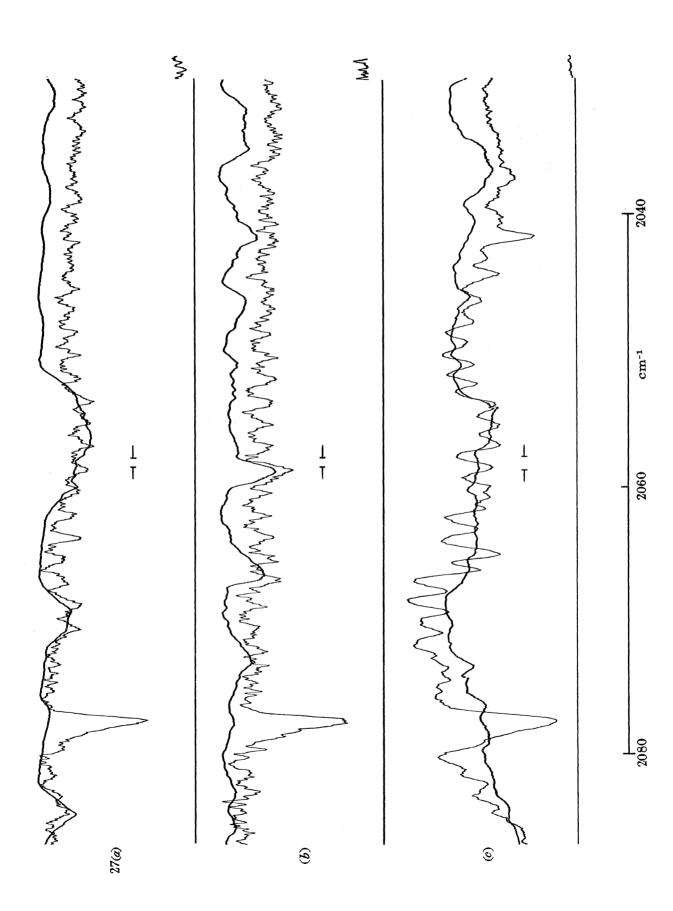

band cm^{-1} 2467.8 $\nu \, (\mathrm{cm}^{-1})$ (vac.) 2494.82462* * N_2O band centre $4.06\,\mu$. Table 2 (figure 21) line no. 20 FIGURE 21 I T 2515 4,4,4 ∞ ∞ $2\nu_1 P$ branch 4, 8 ref. band $v \text{ (cm}^{-1})$ (vac.) $\{2560 \text{ to}$ $\{2525$ 2515.62512.0 line no. 2560

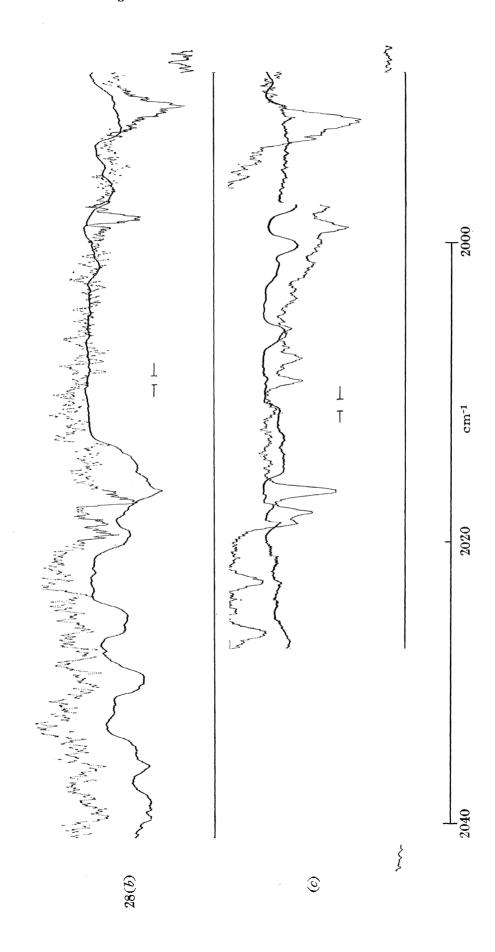


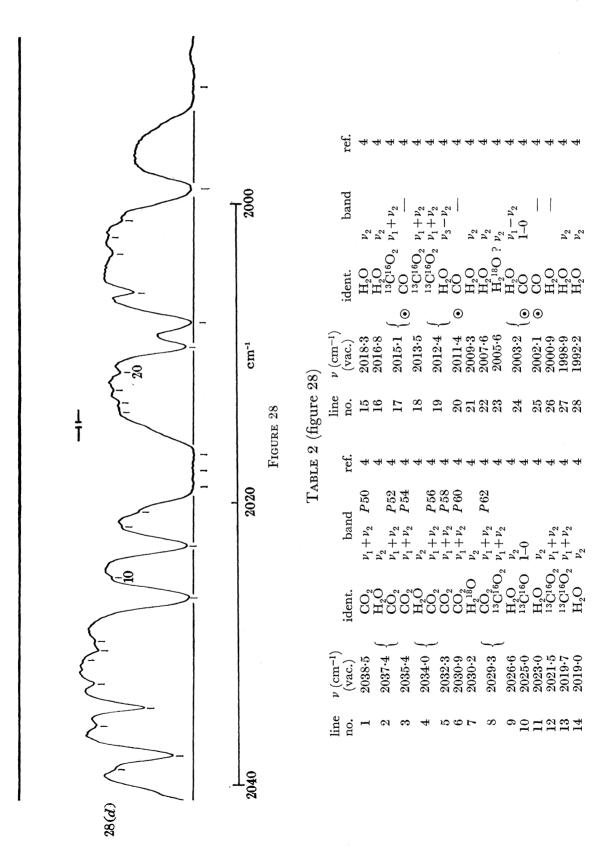

$\rm cm^{-1}$ 2420 FIGURE 22

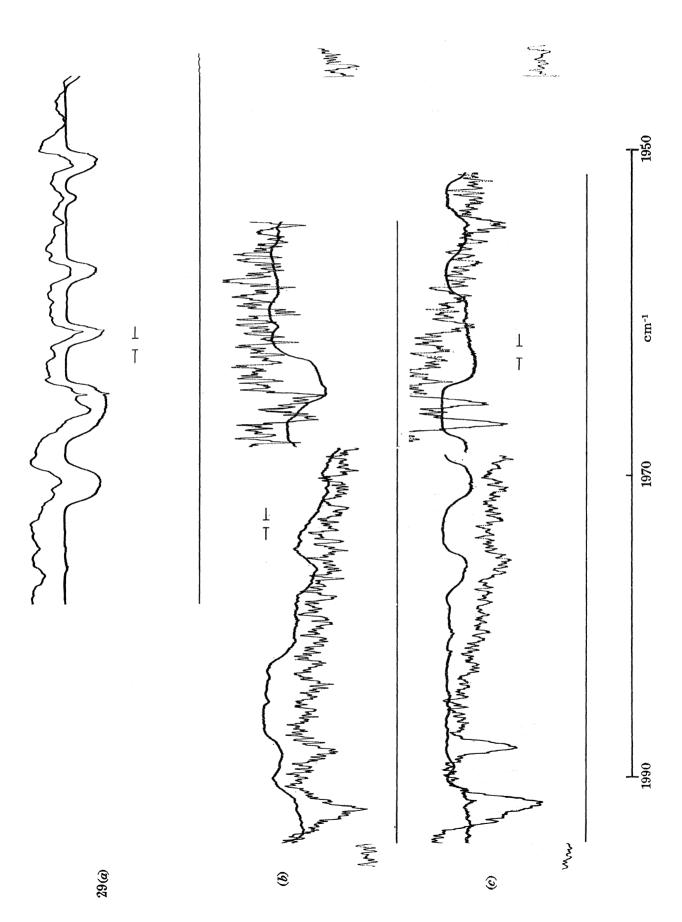




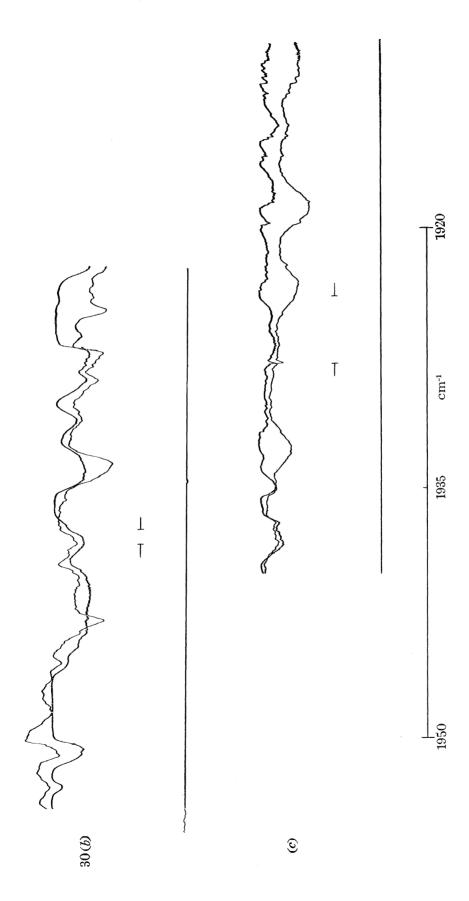


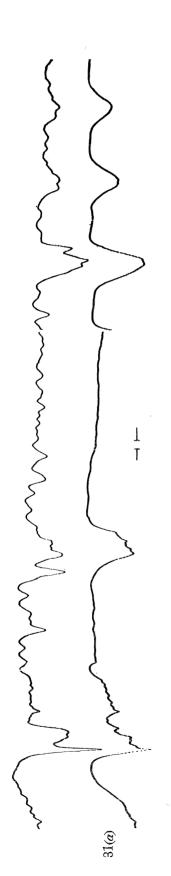


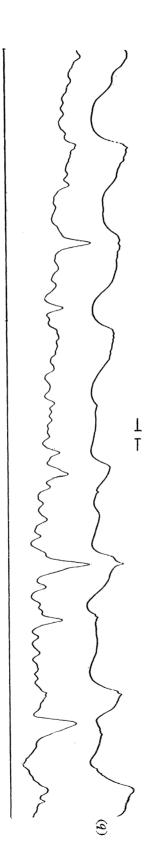


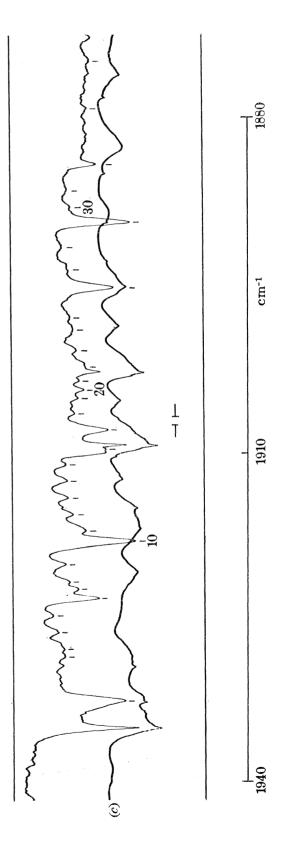

2080 2103.2 2100.5 2099.1 2097.3 2094.9 2093.5 2093.5 2090.62088.5 $\begin{array}{c} 2086.3 \\ 2085.4 \\ 2083.8 \end{array}$ 2080.82087.1Table 2 (figure 26) FIGURE 26 I band ident. $\nu \, (\text{cm}^{-1})$ (vac.) 2131.6 2129.6 2127.7 2126.1 2119.7 2118.0 2115.6 2111.6 2110.2 2108.7 2108.7 2107.4 2106.4 2124.2 $2123\cdot 6$ 2121.32122.7 2130 (p)92

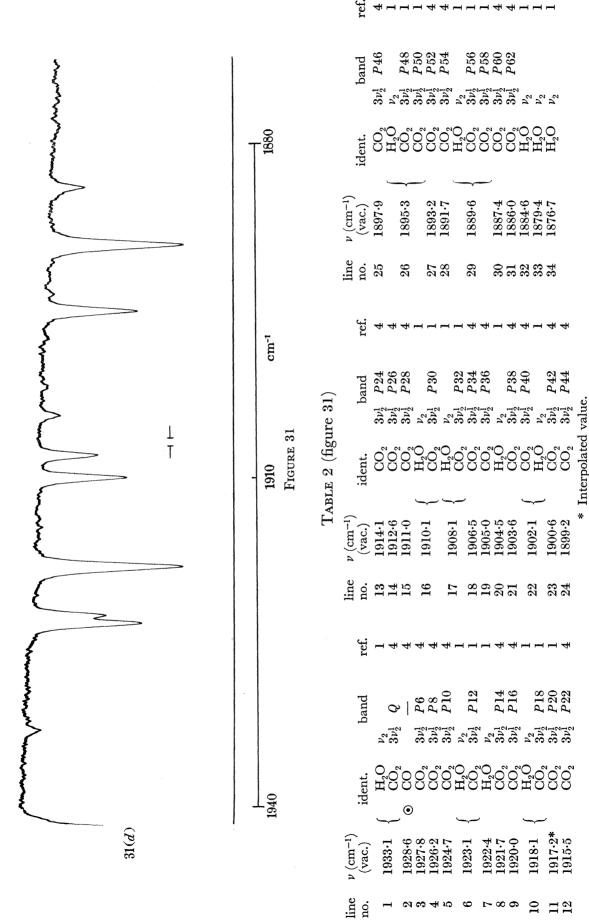
band $\begin{array}{c} v_1 + v_2 \\ v_1 + v_2 \\ v_1 + v_2 \end{array}$ $\nu \, ({\rm cm}^{-1})$ (vac.) 2050·5 2049·0 2047·5 2046·0 2042.9 2041.3 2037.4 2035.4 2044.4 2034.02032.3 cm^{-1} Table 2 (figure 27) FIGURE 27 I $\nu \text{ (cm}^{-1})$ (vac.) 2064.5 $\begin{array}{c} 2062.7 \\ 2061.3 \end{array}$ 2059.82058.2 2056.6 2055.2 2053.6 2052.9 2052.1 v_{1}^{2} $v_{1}+v_{2}$ $v_{1}+2v_{2}-v_{2}$ $v_{1}+2v_{2}-v_{2}$ $v_{1}+v_{2}$ $\begin{array}{c} v_1 + v_2 \\ v_1 + v_2 \\ v_1 + v_2 \end{array}$ 2080 $\nu \text{ (cm}^{-1})$ (vac.) $\begin{array}{c} 2072.2 \\ 2070.6 \end{array}$ 2077.3 2076.92073.2 2068.92067.5 2065.9 line no. 9 7 8

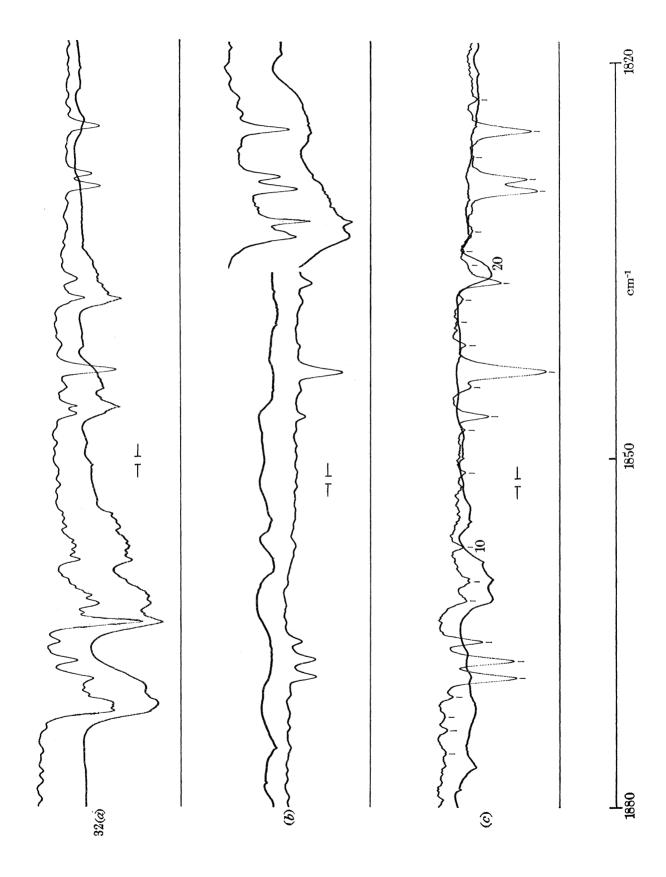


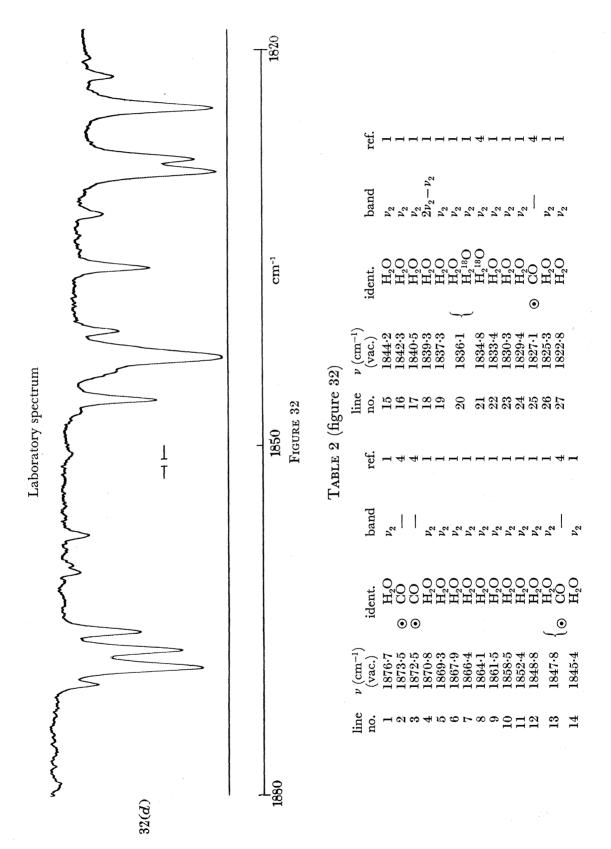

Vol. 254. A.

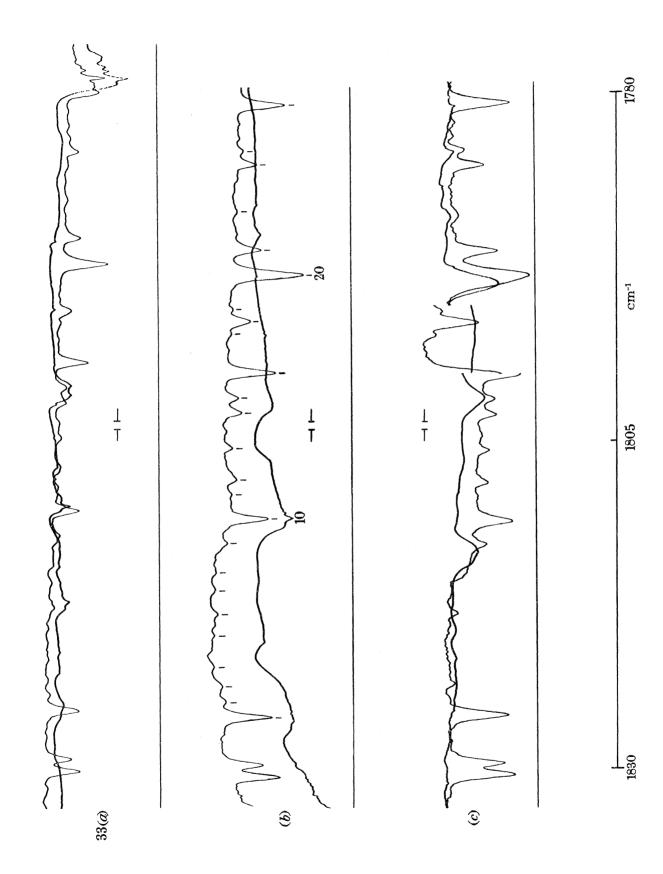

15

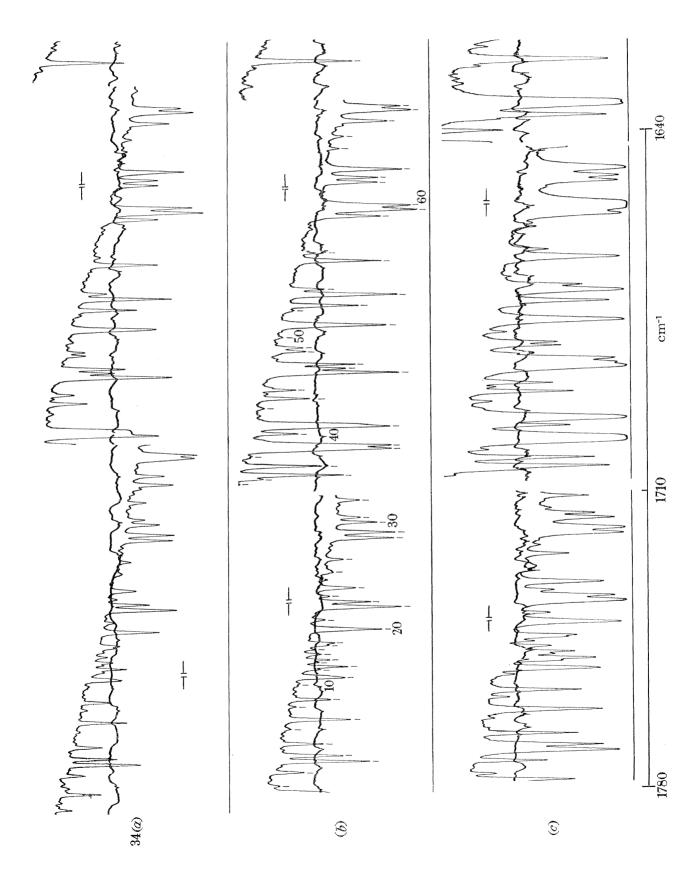

band H20 C00 C00 H20 C00 C00 C00 cm^{-1} line $\nu \text{ (cm}^{-1})$ no. (vac.) 1958-7 $\begin{array}{c} 1952.9 \\ 1952.2 \end{array}$ 1961.21959.61957.61955.01951.11963.71957.0 Table 2 (figure 29) Ţ 22 23 25 26 27 FIGURE 29 band **⊙ ⊙** $\odot \odot \odot$ 8.08611983.01982.21981.3199029(d)

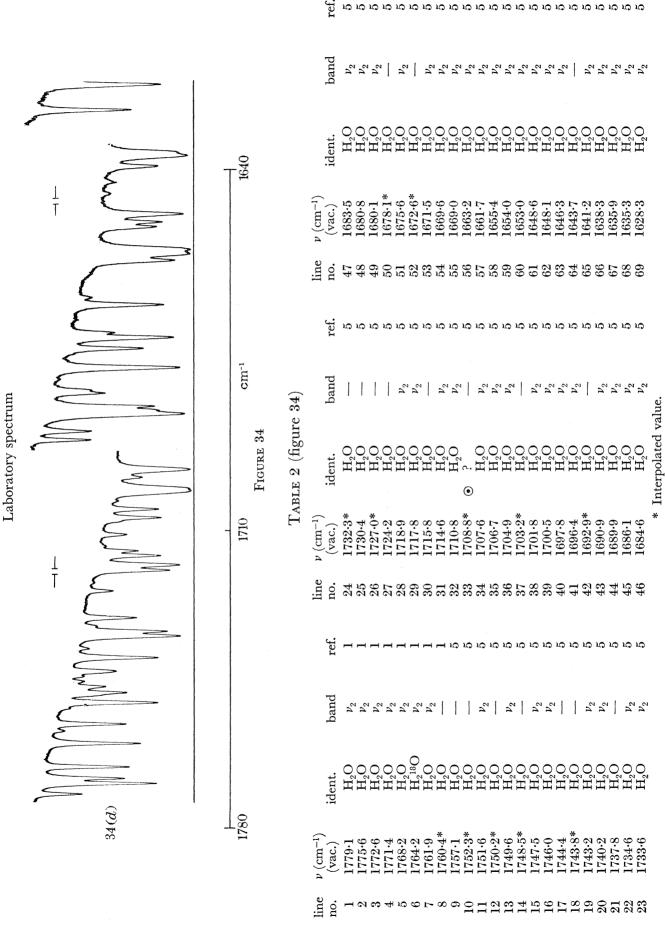

1920 I line $\nu \text{ (cm}^{-1})$ no. (vac.) 1933.21926.7 cm^{-1} Table 2 (figure 30) FIGURE 30 10 1935 ${v_2\atop v_2}$ R22 ${v_2\atop v_2}$ R22 ${3v_2\atop v_2}$ R20 ${v_2\atop v_2}$ ${v_2\atop v_2}$ ${v_2\atop v_2}$ band 1943 1939·2 1938·0 1937·2 1935·4 1949.3 1951.1 $1950 \cdot 1$ 30(d)

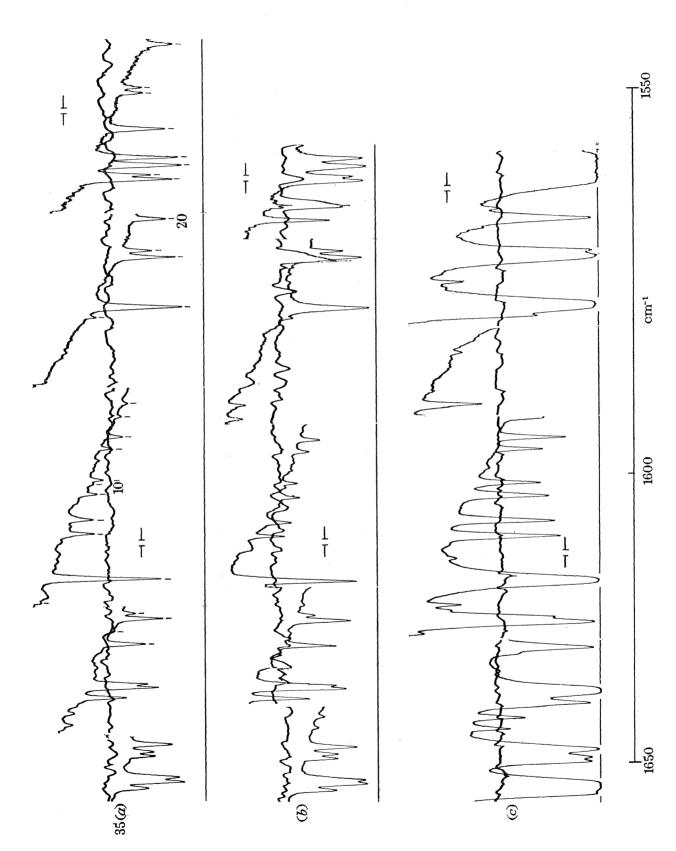


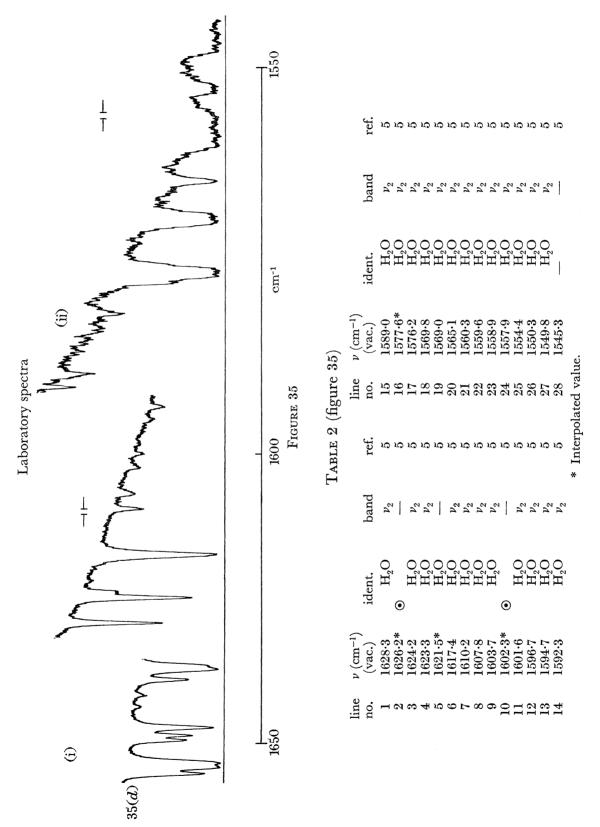



Laboratory spectrum


116







cm^{-1} 792.6 1791.0 1788.5 1784.9 1784.0 * Interpolated value. Laboratory spectrum Table 2 (figure 33) FIGURE 33 T • • 1825·3 1824·1* 814.5* 1812.2 1810.6 1808.6 1807.8 1821-4 1819-0 1817-5 1816.133(d)

